TECHNICAL SCIENCES

 DOI: 10.12737/2219-0767-2023-16-1-7-17

Haider A. Abbas Mohammed1, S.I. Polyakov2, V.I. Akimov3, A.V. Polukazakov3

Application of the theory of statistical hypotheses in automation problems technological processes
  • 1Computer Department, College of Basic Education, University of Diyala, Diyala, Republic of Iraq, This email address is being protected from spambots. You need JavaScript enabled to view it.

    2Voronezh State University of Forestry and Technologies named after G.F. Morozov

    3ФГБОУ ВО «Воронежский государственный технический университет, This email address is being protected from spambots. You need JavaScript enabled to view it.

  • The paper substantiates the application of methods of the theory of statistical hypotheses for the tasks of automation of technological processes. The functioning of the process automation system is considered as the management of a complex technical system. The operation of the automation system belongs to the multi-alternative in terms of the theory of statistical hypotheses: two hypotheses of the correct mode and two hypotheses of the erroneous operation of the system. The article provides general expressions for calculating the probabilities of these modes for two statistical models of the controlled parameter of the technological process and standard models of the metrological spread of the measuring channel. In this case, the accuracy class of the measuring channel should be expressed as a reduced error. The simulation of the operating modes of the process automation system is carried out within the framework of the theory of statistical hypotheses. The results of modeling for the normal probability density of the statistical model of the controlled quantity, uniform and triangular statistical models of estimation of the controlled parameter are presented. A program of statistical evaluation of the modes of operation of the automation system has been developed for symmetric and asymmetric statistical models of the spread of the controlled parameter and several models of metrological spread of the evaluation of the technological parameter. The calculation of the a priori probability of the normal functioning of the automation system of the technological process and the calculation of the a priori probability of erroneous operation of the automation system is given. Expressions for calculating a posteriori probability of the results of verification of measuring instruments of automation systems are obtained.
  • Ключевые слова — Statistical hypothesis, automation, probabilistic model, technological process, decision-making, criterion, modeling, evaluation.

  • [1] Shubnaya, O.A. Nauchnaya gipoteza. Metody proverki nauchnoy gipotezy v pedagogicheskih issledovaniyah [Scientific hypothesis. Methods of testing scientific hypotheses in pedagogical research] / O.A. Shubnaya. – Tekst : neposredstvennyy // Molodoy uchenyy. – 2022. – № 26 (421). – S. 257-260. – URL: https://moluch.ru/archive/421/93694/ (data obrascheniya: 05.02.2023).

    [2] Naumenko, A.P. Veroyatnostno-statisticheskie metody prinyatiya resheniy : teoriya, primery, zadachi [Probabilistic and statistical methods of decision-making : theory, examples, tasks: textbook] : uchebnoe posobie / A.P. Naumenko, I.S. Kudryavceva, A.I. Odinec. – Omsk : Izd-vo OmGTU, 2018. – 108 s.

    [3] Eysmont, N.G. Teoreticheskie osnovy i praktika nauchnyh issledovaniy [Theoretical foundations and practice of scientific research] : ucheb. posobie / N.G. Eysmont, V.V. Dan'shina, S.V. Biryukov. – Omsk : Izd-vo OmGTU, 2018. – 98 s.

    [4] The way of quality management of the decision making software systems development / O.N. Dolinina, V.A. Kushnikov, V.V. Pechenkin, A.F. Rezchikov // Advances in Intelligent Systems and Computing. – 2019. - Vol. 763. – Pp. 90-98. – DOI: 10.1007/978-3-319-91186-1_11.

    [5] Sukhodolov, A.P. Managing a company on the basis of the internet of things: systemic analysis, information processing, and decision making in the system "machine-human-machine" / A.P. Sukhodolov // Studies in Computational Intelligence. – 2019. – Vol. 826. – Pp. 871-880. – DOI: 10.1007/978-3-030-13397-9_89.

    [6] The role of paradox theory in decision making and management research / D.A. Waldman, L.L. Putnam, E. Miron-Spektor, D. Siegel // Organizational Behavior and Human Decision Processes. – 2019. – Vol. 155. – Pp. 1-6. – DOI: 10.1016/j.obhdp.2019.04.006.

    [7] Rizun, N. Method of decision-making logic discovery in the business process textual data / N. Rizun, A. Revina, V. Meister // Lecture Notes in Business Information Processing. – 2019. – Vol. 353. – Pp. 70-84.

    [8] Solodov, A.A. Matematicheskaya formalizaciya i algoritmizaciya osnovnyh moduley organizacionno-tehnicheskih sistem [Mathematical formalization and algorithmization of the main modules of organizational and technical systems] / A.A. Solodov // Statistika i ekonomika. – 2020. – T. 17, № 4. – S. 96-104. – DOI: 10.21686/ 2500-3925-2020-4-96-104.

    [9] Kohonen, T. Samoorganizuyuschiesya karty [Self-organizing maps] / T. Kohonen ; per. 3-go angl.izd. – M. : Laboratoriya znaniy, 2021. – 660 s.

    [10] Basovskiy, L.E. Osnovy nauchnyh issledovaniy [Fundamentals of scientific research] : uchebnik / L.E. Basovskiy, E.N. Basovskaya. – M. : INFRA-M, 2023. – 257 s. – DOI: 10.12737 /1192099.

    [11] Kruz, R.L. Struktury dannyh i proektirovanie programm [Data structures and program design] / R. L. Kruz; per. s angl. – M.: Laboratoriya znaniy, 2021. – 768 s.

    [12] Tavokin, E.P. Teoriya upravleniya [Theory of Management] / E.P. Tavokin. – M. : INFRA-M, 2023. – 202 c. – DOI: 10.12737/textbook_5b3b199c838ad5.96937882.

    [13] Vartanov, S.A. Prikladnaya teoriya igr dlya ekonomistov [Applied game theory for Economists] / S.A. Vartanov, E.A. Ivin. – Vologda : VolNC RAN, 2020. – 283s.

    [14] Kremlev, A.G. Osnovnye ponyatiya teorii igr [Basic concepts of game theory] : uchebnoe posobie / A.G. Kremlev. – Ekaterinburg : Izdatel'stvo Ural'skogo un-ta, 2016. – 144 s.

    [15] Ivchenko, G.I. Matematicheskaya statistika [Mathematical statistics] / G.I. Ivchenko, Yu.I. Medvelev. – M.: KD Librokom, 2019. – 352 s.

    [16] Podinovskiy, V.V. Analiz resheniy v usloviyah neopredelennosti pri nechislovom ocenivanii predpochteniy i veroyatnostey [Analysis of solutions under uncertainty in non-numerical estimation of preferences and probabilities] / V.V. Podinovskiy // Problemy upravleniya. – 2020. – № 1. – S. 48-58. – DOI: 10.25728/pu.2020.1.5.

    [17] Akimov, V.I. Selecting criteria for optimizing parameters of ADC for digital signal processing / V.I. Akimov, A.V. Polukazakov, N.V. Sitnikov // Proceedings - 2019 International Russian Automation Conference, RusAutoCon 2019. – 2019. – С. 8867651. – DOI: 10.1109/RUSAUTOCON.2019.8867651.

    [18] Polyakov, S.I. Mathematical model of the dynamics of the balancing mechanism of the weighing system of the batcher / S.I. Polyakov, V.I. Akimov, A.V. Polukazakov // Proceedings of the 8th International Conference on Industrial Engineering ICIE 2022, International Conference on Industrial Engineering. – 2022. – Pр. 370-380. – DOI: 10.1007/978-3-031-14125-6.

    [19] Akimov, V.I. Software Life Management Systems for «Smart» Residential Houses / V.I. Akimov, S.I. Polyakov, A.V. Polukazakov // Proceedings – 2020 International Russian Automation Conference (RusAutoCon). – 2020. - Pp. 267-272. – DOI: 10.1109/RusAutoCon49822.2020.9208215.

    [20] Polyakov, S.I. Modelirovanie sistemy upravleniya otopleniem «umnogo» zhilogo doma [Modeling of the heating control system of a "smart" residential building] / S.I. Polyakov, V.I. Akimov, A.V. Polukazakov // Modelirovanie sistem i processov. – 2020. – T. 13, № 1. – S. 68-76. – DOI: 10.12737/2219-0767-2020-13-1-68-76.

    [21] Development and Research of a "Smart Home" Heating Control System / V.I. Akimov, E.N. Desyatirikova, A.V. Polukazakov [et al.] // Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). – 2020. – Pp. 574 - 580. – DOI: 10.1109/EIConRus49466.2020.9039541.

    [22] Polyakov, S.I. Avtomaticheskoe upravlenie processami dozirovaniya sypuchih materialov [Automatic control of the processes of dosing of bulk materials] : monografiya / S.I. Polyakov; – Voronezh.: VGLTU, 2019. – 180 s.

    [23] Akimov, V.I. Design and Development of Cascade Heating Control for a «Smart» Residential Housing / V.I. Akimov, S. I. Polyakov, A.V. Polukazakov // Proceedings – 2020 International Russian Automation Conference (RusAutoCon). – 2020. - Pp. 42-48. – DOI: 10.1109/RusAutoCon 49822.2020.9208225.

    [24] Development, modeling and research of automation systems for “smart” heating of a residential building / E.N. Desyatirikova, V.I. Akimov, A.V. Polukazakov [et al.] // Proceeding of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). – 2021. – Pp. 849–854. – DOI: 10.1109/ElConRus51938.2021.9396401.

    [25] Polyakov, S.I. Application of the theory of statistical hypotheses in tasks of automating technological processes / S.I. Polyakov, V.I. Akimov, A.V. Polukazakov // Lecture Notes in Electrical Engineering. – 2022. - Pр. 43-56. Springer Nature Switzerland. – DOI: 10.1007/978-3-030-94202-1_5 h.

  • С. 7-17.

DOI: 10.12737/2219-0767-2023-16-1-18-26

S.D. Nikolenko1, S.A. Sazonova1, V.O. Uvarov1

Modeling of the stress-strain state of brickwork of a single-storey non-residential building
  • 1Voronezh State Technical University, This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.

  • The application of the finite element method (FEM) for the calculation of brick structures of a single-storey building at the design stage is considered. The stress-strain state of the critical masonry of the building is restored. For this purpose, the deformation theory of plasticity of A.A. Ilyushin, the dependence of stresses on deformations according to existing norms for the calculation of brickwork of buildings is applied. The results of full-scale testing using the method of non-destructive testing are analyzed. As a result of monitoring the technical condition of non-existing structures of the building under study, defects that appeared at the stage of construction of the building and during its operation were revealed. The results obtained by the two methods were compared, the degree of wear of masonry building structures was determined, after which recommendations were developed to improve the current technical condition of the brick building under consideration. It is established that after the completion of repair work and during the further operation of the construction object, it is necessary to comply with the requirements for the current constructive prevention of the building on the basis of the requirements of the current normative acts. The possibility of the superstructure of the second floor superstructure on existing structures was also analyzed. It is revealed that at the moment it is impossible to perform the superstructure, since in order to make it possible to perform the superstructure of the second floor, the conditions must be met to strengthen the structures for the safety of the operation of the lower floor with an increase in the load on it due to the support of an additional floor on it.
  • Ключевые слова — Load-bearing structures, finite element method, design, non-destructive testing method, technical condition inspection process, defects, development of recommendations.

  • [1] Sekulovich, M. Metod konechnyh elementov [Finite element method] / M. Sekulovich ; pod red. V.Sh. Barbakadze. – M.: Stroyizdat, 1993. – 664 s.

    [2] Tehnicheskiy otchet po rezul'tatam inzhenerno-geologicheskih izyskaniy [Technical report on the re-sults of engineering and geological surveys]. Ob'ekt: «Zdanie, raspolozhennoe po adresu: Sverdlovskaya oblast', p.g.t. Sos'va» Arh. №26-07-19. – 170 s.

    [3] GOST 31937-2011 Zdaniya i sooruzheniya. Pravila obsledovaniya i monitoringa tehnicheskogo sostoyaniya [Buildings and constructions. Rules for the inspection and monitoring of technical condition] : izdanie oficial'noe : data vvedeniya 2014.01.01. - M. : Standartinform, 2014. - 60 s.

    [4] Sazonova, S.A. Control of load-bearing structures of technological overpasses / S.A. Sazonova, S.D. Nikolenko, A.A. Osipov // IOP Conference Series: Earth and Environmental Science. – 2022. – Vol. 988(5). – P. 052012. – DOI: 10.1063/5.0093524.

    [5] Sazonova, S.A. Monitoring concrete road pavement damages / S.A. Sazonova, S.D. Nikolenko, N.V. Akamsina // IOP Conference Series: Earth and Environmental Science. - 2022. - V. 988(5). - P. 052054. - DOI: 10.1088/1755-1315/988/5/052054.

    [6] Assessment of the load-bearing capacity of materials and structures using a finite element model / S.A. Sazonova, T.V. Zyazina, G.I. Smetankina [et al.] // Journal of Physics: Conference Series. – 2022. - V. 2388(1). - P. 012059. - DOI: 10.1088/1742-6596/2388/1/012059.

    [7] Ecologically safe construction of monolithic concrete structures / S.D. Nikolenko, V.Y. Manohin, I.V. Mihnevich, M.V. Manohin // IOP Conference Series: Materials Science and Engineering. Construction and Architecture: Theory and Practice of Innovative Development" (CATPID-2020). - 2020. - P. 052068. - DOI: 10.1088/1757-899X/913/5/052068.

    [8] Measures to improve the performance of concrete of rein-forced concrete supports of technological overpasses / S.D. Nikolenko, S.A. Sazonova, N.V. Akamsina [et al.] // IOP Conference Series: Earth and Environmental Science. V International Scientific Conference on Agribusiness, Environmental Engineering and Biotechnologies. - 2021. - P. 052036. - DOI: 10.1088/1755-1315/839/5/052036.

    [9] Evdokimova, S.A. Segmentation of store customers to increase sales using ABC-XYZ-analysis and clustering methods / S.A. Evdokimova // Journal of Physics: Conference Series. – 2021. – Vol. 2032. – C. 012117. - DOI: 10.1088/1742-6596/2032/1/012117.

    [10] Dust control of workplaces from bulk materials / S.A. Sazonova, S.D. Nikolenko, E. Vysotskaya [et al.] // AIP Conference Proceedings. Proceedings of the III International Conference on Advanced Technologies in Materials Science, Mechanical and Automation Engineering. - 2021. - P. 060028. - DOI: 10.1063/5.0072036.

    [11] Control of the formation of defects in brickwork of buildings / S. Sazonova, S. Nikolenko, S. Dorokhin, D. Sysoev // AIP Conference Proceedings. - 2022. - Vol. 2467. - P. 020023. - DOI: 10.1063/5.0093524.

    [12] Weld defects and automation of methods for their detection / S.A. Sazonova, S.D. Nikolenko, A.A. Osipov [et al.] // IOP Conference Series. – 2021. – Vol. 2467. – P. 22078. – DOI: 10.1088/1742-6596/1889/2/022078.

    [13] Evaluation of the effect of fermentation conditions on the functional and technological characteristics of the semifinished meat product / Yu.A. Safonova, A.V. Skrypnikov, E.N. Kovaleva [et al.] // IOP Conference Series: Earth and Environmental Science. International Conference on Production and Processing of Agricultural Raw Materials (P2ARM 2021). - 2022. - - Vol. 1052. - S. 012049. - DOI: 10.1088/1755-1315/1052/1/012049.

    [14] Example of integrating e-learning platforms with social network for create effective training courses / O.Y. Lavlinskaya, O.V. Kuripta, F.A. Desyatirikov [et al.] // Proceedings of the 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2022. - 2022. - Pp. 48-52. - DOI: 10.1109/ElConRus54750.2022.9755510.

    [15] Development of an operational quality management application for the production process / Yu.A. Safonova, A.V. Lemeshkin, A.N. Pegina, S.S. Rylev // AIP Conference Proceedings. Krasnoyarsk Scientific Centre of the Siberian Branch of the Russian Academy of Sciences. - 2021. - P. 70031. – DOI: 10.1063/5.0071375.

    [16] Study of the production process of extruded feed and evaluation of the quality of the resulting product using software methods / E.N. Kovaleva, Yu.A. Safonova, A.V. Lemeshkin [et al.] // IOP Conference Series: Earth and Environmental Science. International Conference on Production and Processing of Agricultural Raw Materials (P2ARM 2021). - 2022. - P. 012139. - DOI: 10.1088/1755-1315/1052/1/012139.

    [17] Novikov, A.I. Grading of Scots pine seeds by the seed coat color: how to optimize the engineering parameters of the mobile optoelectronic device / A.I. Novikov, V.K. Zolnikov, T.P. Novikova // Inventions. - 2021. - V. 6, № 1. - P. 7. - DOI: 10.3390/inventions6010007.

    [18] Methods of assessing the effectiveness of reforestation based on the theory of fuzzy sets / A. Kuzminov, L. Sakharova, M. Stryukov, V.K. Zolnikov // IOP Conference Series: Earth and Environmental Science. "International Forestry Forum "Forest Ecosystems as Global Resource of the Biosphere: Calls, Threats, Solutions". - 2020. - P. 012007. - DOI: 10.1088/1755-1315/595/1/012007.

    [19] Sakharova, L. Methodology for assessing the sustainability of agricultural production, taking into account its economic efficiency / L. Sakharova, M. Stryukov, V.K. Zolnikov // IOP Conference Series: Earth and Environmental Science. International scientific and practical conference "Forest ecosystems as global resource of the biosphere: calls, threats, solutions" (Forestry-2019). - 2019. - P. 012019. - DOI: 10.1088/1755-1315/392/1/012019.

    [20] Belokurov, V.P. Modeling passenger transportation processes using vehicles of various forms of ownership / V.P. Belokurov, S.V. Belokurov, V.K. Zolnikov // Transportation Research Procedia. - 2018. - Pp. 44-49. - DOI: 10.1016/j.trpro.2018.12.041.

    [21] Formation of the predicted training parameters in the form of a discrete information stream / T.E. Smolentseva, V.I. Sumin, V.K. Zolnikov, V.V. Lavlinsky // Journal of Physics: Conference Series. - 2018. – Vol. 973. - P. 012045. - DOI: 10.1088/1742-6596/973/1/012045.

    [22] Methods of multi-criteria optimization in problems of simulation of trucking industry / S.V. Belokurov, V.P. Belokurov, V.K. Zolnikov, O.N. Cherkasov // Transportation Research Procedia. 12th International Conference "Organization and Traffic Safety Management in Large Cities", SPbOTSIC 2016. - 2017. - Pp. 47-52. - DOI: 10.1016/j.trpro.2017.01.010.

    [23] Kubicka, K. Influence of the thermal insulation type and thickness on the structure mechanical response under fire conditions / K. Kubicka, U. Pawlak, U. Radoń // Applied Sciences (Switzerland). - 2019. - Vol. 9(13). - P. 2606. - DOI: 10.3390/app9132606.

    [24] Modeling evacuation dynamics on stairs by an extended optimal steps model / Y. Zeng, W. Song, F. Huo, G. Vizzari // Simulation Modelling Practice and Theory. - 2018. - Vol. 84. - Pp. 177-189. - DOI: 10.1016/j.simpat.2018.02.001.

    [25] Fire risk assessment for building operation and maintenance based on BIM technology / L. Wang, W. Li, W. Feng, R. Yang // Building and Environment. - 2021. - Vol. 205. - P. 108188. - DOI: 10.1016/j.buildenv.2021.108188.

    [26] Bim and computer vision-based framework for fire emergency evacuation considering local safety performance / H. Deng, Z. Ou, G. Zhang [et al.] // Sensors. - 2021. - Vol. 21(110). - P. 3851. - DOI: 10.3390/s21113851.

    [27] Interactive WebVR visualization for online fire evacuation training / F. Yan, Y. Hu, J. Jia [et al.] // Multimedia Tools and Applications. - 2020. - Vol. 79(41-42). - Pp. 31541-31565. - DOI: 10.1007/s11042-020-08863-0.

    [28] Wang, C. Fire evacuation in metro stations: Modeling research on the effects of two key parameters / C. Wang, Y. Song // Sustainability (Switzerland). - 2020. - Vol. 12(2). - P. 684. - DOI: 10.3390/su12020684.

    [29] Risk assessment model for building fires based on a Bayesian network / X. Shu, J. Yan, J. Hu [et al.] // Qinghua Daxue Xuebao/Journal of Tsinghua University. - 2020. - Vol. 60(4). - Pp. 321-327. -DOI: 10.16511/j.cnki.qhdxxb.2019.26.036.

    [30] Probabilistic fire risk framework for optimizing construction site layout / R. El Meouche, M. Abunemeh, I. Hijazi [et al.] // Sustainability (Switzerland). - 2020. - Vol. 12(10). - P. 4065. - DOI: 10.3390/SU12104065.

    [31] Suchy, P.T. The influence of the arrangement of passenger cars in indoor car parks on CFD calculations / P.T. Suchy, W. Węgrzyński // Bezpieczenstwo i Technika Pozarnicza. - 2018. - Vol. 52, № 4. - Pp. 118-139. - DOI: 10.12845/bitp.52.4.2018.8.

    [32] Strength test of the industrial building's load-bearing structures / S.A. Sazonova, S.D. Nikolenko, T.V. Zyazina [et al.] // Journal of Physics: Conference Series. ICMSIT-III 2022: Metrological Support of Innovative Technologies, 2022. - P. 022016. - DOI: 10.1088/1742-6596/2373/2/022016.

    [33] Behavior of dispersion-reinforced concrete under dynamic action / S.D. Nikolenko, S.A. Sazonova, V.F. Asminin [et al.] // Journal of Physics: Conference Series. ICMSIT-III 2022: Metrological Support of Innovative Technologies, 2022. - P. 022006. - DOI: 10.1088/1742-6596/2373/2/022006.

    [34] Condition monitoring of multi-apartment buildings / S. Sazonova, S. Nikolenko, E. Chernikov [et al.] // AIP Conference Proceedings. – 2022. - V. 2647. - P. 030018. - DOI: 10.1063/5.0104699.

    [35] Inspection of project documentation during the construction of an apartment building / S. Sazonova, S. Nikolenko, A. Meshcheryakova [et al.] // AIP Conference Proceedings. – 2022. – Vol. 2647. - P. 030019. - DOI: 10.1063/5.0104700.

  • С. 18-26.

DOI: 10.12737/2219-0767-2023-16-1-26-34

V.I. Sumin1, A.V. Melnikov2, V.I. Antsiferova3, S.A. Sazonova4

Development of logical and mathematical models for making managerial decisions in complex organizational systems for special purposes
  • 1Voronezh Institute of the Federal Penitentiary Service of Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.

    2Central branch of RGUP, This email address is being protected from spambots. You need JavaScript enabled to view it.

    3Voronezh State Forest Engineering University named after G.F. Morozov, This email address is being protected from spambots. You need JavaScript enabled to view it.

    4Voronezh State Technical University

  • This article discusses the problem of making managerial decisions by employees when using complex organizational systems for special purposes. In order to make effective management decisions by employees in complex organizational systems for special purposes, it is necessary to develop the structure of this system, to adapt the mathematical models of the set of goals to real goals-processes, to the choice of alternative management decisions for intermediate goals of such systems. It is advisable to adhere to the following approach "a solution is a multi-layered iterative information process initiated by a problem situation, preceding the action." When developing cognitive mathematical models (CMM) for managerial decision-making (CMP), we will assume that the target settings (TA) are homogeneous and should be based on the basic principles of construction (COSSN) of a complex organizational structure for special purposes. The signs of the classification of managerial decisions and the stages of the process of making managerial decisions are given: analysis, forecasting, optimization and choice of alternatives. PUR when functioning in the SSSN is important for all employees who, constantly or periodically act as managers (curators, organizers, management entities). The network model of the CSSSN in the form of graph G is developed based on the requirements for the functioning of this system as a technology for the adoption of SD.
  • Ключевые слова — Complex organizational systems for special purposes; systems approach; adoption of managerial decisions; goal tree; multi-variant synthesis; cognitive mathematical models; optimization method; automation of information processing; decision maker; operational, tactical and strategic management decisions; program-target approach; methods and techniques.

  • [1] Levina, S.Sh. Upravlencheskie resheniya [Managerial decisions] : monografiya / S.Sh. Levina, R.Yu. Turchaeva. – M.: Feniks, 2019. – 224 c.

    [2] Yukaeva, V.S. Prinyatie upravlencheskih resheniy [Managerial decision–making] / V.S. Yukaeva, E.V. Zubareva, V.V. Chuvikova. – M.: Dashkov i Ko, 2019. – 324 c.

    [3] Osnovy upravleniya v pravoohranitel'nyh organah: uchebnoe posobie [Fundamentals of management in law enforcement agencies] / V.P. Balan, A.V. Dushkin, V.I. Novosel'cev, V.I. Sumin. – Voronezh : Nauchnaya kniga, 2021. – 100 s.

    [4] Sumin, V.I. Analiz processa optimizacii formirovaniya ierarhicheskih mnogourovnevyh slozhnyh organizacionnyh sistem [Analysis of the process of optimizing the formation of hierarchical multilevel complex organizational systems] / V.I. Sumin, T.E. Smolenceva // Vestnik Voronezhskogo instituta FSIN Rossii. -2020. - № 2. - S. 139-144.

    [5] Analiz funkcionirovaniya i strukturnaya dekompoziciya informacionnyh sistem special'nogo naznacheniya [Analysis of functioning and structural decomposition of special purpose information systems] / V.I. Sumin, T.E. Smolenceva, Yu.Yu. Gromov, V.M. Tyutyunnik // Nauchno-tehnicheskaya informaciya. Seriya 2: Informacionnye processy i sistemy. – 2021. – № 8. – S. 5-14. – DOI: 10.36535/0548-0027-2021-08-2.

    [6] Zol'nikov, V.K. Modelirovanie i analiz proizvoditel'nosti algoritmov balansirovki nagruzki oblachnyh vychisleniy [Modeling and performance analysis of cloud computing load balancing algorithms] / V.K. Zol'nikov, O.V. Oksyuta, N.F. Dayub // Modelirovanie sistem i processov. - 2020. - T. 13, № 1. -S. 32-39. – DOI: 10.12737/2219-0767-2020-13-1-32-39.

    [7] Melnikov, A.V. Prediction of the integrated indicator of quality of a new object under the conditions of multicollinearity of reference data / A.V. Melnikov, S.B. Akhlyustin, R.A. Zhilin // Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software. – 2020. – T. 13, № 4. – P. 66-80. – DOI: 10.14529/mmp200406.

    [8] Buharin, S.V. Klasterno-ierarhicheskie metody ekspertizy ekonomicheskih ob'ektov: monografiya [Cluster-hierarchical methods of analysis of economic objects] / S.V. Buharin, A.V. Mel'nikov. – Voronezh: Izd-vo «Nauchnayakniga», 2012. – 276 s.

    [9] Statisticheskie metody ekspertizy tehnicheskih i ekonomicheskih ob'ektov [Statistical methods of examination of technical and economic objects] : monografiya / S.V. Buharin, D.A. Volkov, A.V. Mel'nikov, V.V. Navoev. – Voronezh: Izd-vo «Nauchnaya kniga», 2013. – 274 s.

    [10] Sumin, V.I. Razrabotka modeley i algoritmov informacionnyh struktur i processov ob'ektov osoboy vazhnosti [Development of models and algorithms of information structures and processes of objects of particular importance] / V.I. Sumin, D.Yu. Churakov, E.G. Car'kova // Promyshlennye ASU i kontrollery. – 2019. – № 4. – S. 30-39.

    [11] Matematicheskoe modelirovanie v zadache o vybore optimal'nogo mesta sluzhby dlya voennosluzhaschego [Mathematical modeling in the problem of choosing the optimal place of service for a serviceman] / Yu.V. Korypaeva, L.D. Kuznecova, V.I. Sumin, D.B. Desyatov // Vestnik Voronezhskogo instituta FSIN Rossii. – 2022. – № 4. – S. 107-112.

    [12] Matrohina K.V. Sovershenstvovanie metoda scenarnogo analiza v sisteme upravleniya investicionnymi proektami s vysokim urovnem neopredelennosti [Improvement of the scenario analysis method in the management system of investment projects with a high level of uncertainty] / K.V. Matrohina, V.Ya. Trofimec, A.V. Kalach // Vestnik Voronezhskogo instituta FSIN Rossii. – 2022. – № 4. – S. 128-134.

    [13] Men'shih, V.V. Obosnovanie vybora matematicheskogo apparata dlya modelirovaniya deystviy organov vnutrennih del pri vozniknovenii chrezvychaynyh obstoyatel'stv [Justification of the choice of mathematical apparatus for modeling the actions of internal affairs bodies in the event of emergency] / V.V. Men'shih, V.V. Gorlov, V.A. Nikitenko // Vestnik Voronezhskogo instituta FSIN Rossii. – 2022. – № 4. – S. 135-141.

    [14] Smolenceva, T.E. Sovershenstvovanie algoritma upravleniya sortirovkoy vhodnoy dokumentacii v sisteme elektronnogo dokumentooborota [Improvement of the algorithm for managing the sorting of input documentation in the system of electronic document management] / T.E. Smolenceva, A.V. Kalach, S.M. Trushin // Vestnik Voronezhskogo instituta FSIN Rossii. – 2022. – № 4. – S. 167-176.

    [15] Osobennosti resheniya zadach optimizacii na osnove matematicheskih metodov [Features of solving optimization problems based on mathematical methods] / L.V. Stepanov, A.V. Parinov, A.S. Kol'cov, N.P. Sergeev // Vestnik Voronezhskogo instituta FSIN Rossii. – 2022. – № 4. – S. 177-181.

    [16] Arhitektura informacionnoy sistemy avtomatizirovannogo obsluzhivaniya pol'zovateley seti podrazdeleniy ugolovno-ispolnitel'noy sistemy [Architecture of the information system of automated maintenance of users of the network of divisions of the penal system] / N.A. Andreeva, E.V. Korchagina, V.V. Korchagin, A.K. Magometov // Vestnik Voronezhskogo instituta FSIN Rossii. –2022. – № 4. – S. 23-29.

    [17] Modelirovanie sboev v IS pri impul'snom neytronnom vozdeystvii. Chast' 1. Ob'emnye ionizacionnye effekty [Simulation of failures in IC under pulsed neutron action. Part 1. Volumetric ionizing effects] / A.I. Chumakov [i dr.] // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2022. – № 3. – S. 14-19.

    [18] Vlasenkov, E.V. Programmnaya realizaciya metodiki rascheta lokal'nyh pogloschennyh doz i doz strukturnyh povrezhdeniy v apparature kosmicheskih apparatov s uchetom vliyaniya bortovyh radioizotopnyh istochnikov [Software implementation of the methodology for calculating local absorbed doses and doses of structural damage in the equipment of space apparatuses, taking into account the influence of airborne radioisotope sources] / E.V. Vlasenkov // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2022. – № 3. – S. 20-27.

    [19] Raschetno-eksperimental'naya ocenka raspredeleniya pogloschennoy dozy v ob'ekte pri provedenii ispytaniy na issledovatel'skom yadernom reaktore BIGR [Computational and experimental evaluation of the absorbed dose distribution in an object during tests at a research nuclear reactor of the BIGR] / V.A. Kuznecov [i dr.] // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2022. – № 3. – S. 38-43.

    [20] Kustov, A.S. Metod ocenki urovnya bessboynoy raboty ims na osnove elektricheskih parametrov mikroshemy [A method for assessing the level of non-destructive operation of ICS based on the electrical parameters of a micro-circuit] / A.S. Kustov, V.S. Gryadobitov // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2022. – № 3. – S. 5-13.

    [21] Stepanov, K.S. Opredelenie optimal'noy modeli razrabotki prilozheniy virtual'noy real'nosti [Determining the optimal model for developing virtual reality applications] / K.S. Stepanov, T.V. Stepanova // Informacionnye tehnologii. – 2023. – T. 29, № 1. – S. 32-38. – DOI: 10.17587/it.29.32-38.

    [22] Metody i algoritmy dlya resheniya zadachi ranney diagnostiki tehnicheskih ob'ektov s ispol'zovaniem metodov intellektual'nogo analiza dannyh [Methods and algorithms for solving the problem of early diagnostics of technical objects using data mining methods] / G.S. Veresnikov, A.V. Golev, A.M. Moskovcev, M.P. Martirosyan // Informacionnye tehnologii. – 2022. – T. 28, № 9. – S. 475-484. – DOI: 10.17587/it.28.475-484.

    [23] Kurapov, S.V. Operatory i izomorfizm grafov [Operators and graph isomorphism] / S.V. Kurapov, M.V. Davidovskiy // Informacionnye tehnologii. – 2022. – T. 28, № 7. – S. 347-358. – DOI: 10.17587/it.28.347-358.

    [24] Novikov, A.I. Grading of Scots pine seeds by the seed coat color: how to optimize the engineering parameters of the mobile optoelectronic device / A.I. Novikov, V.K. Zolnikov, T.P. Novikova // Inventions. - 2021. - V. 6, № 1. - P. 7. - DOI: 10.3390/inventions6010007.

    [25] Sakharova, L. Methodology for assessing the sustainability of agricultural production, taking into account its economic efficiency / L. Sakharova, M. Stryukov, V.K. Zolnikov // IOP Conference Series: Earth and Environmental Science. International scientific and practical conference "Forest ecosystems as global resource of the biosphere: calls, threats, solutions" (Forestry-2019). - 2019. - P. 012019. - DOI: 10.1088/1755-1315/392/1/012019.

    [26] Research of the process of functioning of hierarchical multi-level complex organizational systems /, V.I. Sumin, T.E. Smolentceva, D.G. Zybin [et al.] // Journal of Physics: Conference Series. – 2021. – Vol. 1902(1). – C. 012089. – DOI: 10.1088/1742-6596/1902/1/012089.

    [27] Sumin, V. Mathematical Model for Managing the Dynamics of the Development of Information Conflict in Information Systems / V. Sumin, A. Noev, A. Dushkin // Proceedings – 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA 2019. – 2019. – Pp. 88-93. – DOI: 10.1109/SUMMA48161.2019.8947546.

  • С. 26-34.

DOI: 10.12737/2219-0767-2023-16-1-34-45

N.Yu. Yudina1, D.V. Arapov2, S.V. Tyutyunnik2

Information and control system of the propanone pyrolysis process
  • 1Voronezh State University of Forestry and Technologies named after G.F. Morozov

    2Voronezh State University of Engineering Technologies, This email address is being protected from spambots. You need JavaScript enabled to view it.

  • The paper presents a solution to the problem of developing an information and control system for the process of propanone pyrolysis, which is the main source for the production of acetylketene, which is widely used in the synthesis of medicines and food additives, insecticides and fungicides, and paints and varnishes. A mathematical model of the propanone pyrolysis process in tube furnace coils has been developed, which takes into account the heat transfer in the reaction zone of the pyro coil by means of radiation from the walls of red-hot mines. The problem of identifying the kinetic parameters of the pyrolysis model on the basis of experimental data obtained at the facility was posed and solved. The problem of static optimization of the propanone pyrolysis process, which consists in maximizing the selectivity of the process, was posed and solved. The software package is made in C#, which is supported by many SCADA systems. The Hook-Jeeves configuration method was used as an optimizer in combination with the penalty function method. The technical, informational and software support for the information and control system of the process has been developed. To develop an information management system, SCADA software was used - RSView32 systems. It allows you to implement the visualization, accumulation and archiving of technological parameters. The main form of information presentation is the mnemonic diagram of the pyrolysis process, the other forms are called from the mnemonic diagram by pressing the corresponding virtual buttons.
  • Ключевые слова — Propanone pyrolysis, information control system, modeling, optimization, design, information technology.

  • [1] Lapshina, M.L. Adaptaciya dekompozicionnogo podhoda k problemam soglasovaniya optimal'nyh planov [Adaptation of the decomposition approach to the problems of matching optimal plans] / M.L. Lapshina, A.S. Chernyh, N.Yu. Yudina // Modelirovanie, optimizaciya i informacionnye tehnologii. – 2017. – № 3 (18). – S. 17.

    [2] Matematicheskoe modelirovanie promyshlennyh processov piroliza benzina v trubchatyh pechah [Mathematical modeling of industrial processes of gasoline pyrolysis in tubular furnaces] / D.V. Arapov, S.G. Tihomirov, S.L. Podval'nyy [i dr.] // Teoreticheskie osnovy himicheskoy tehnologii. – 2018. – T. 52, № 6. – S. 649-662. – DOI: 10.1134/S0040357118060039.

    [3] Arapov, D.V. Optimizaciya piroliznyh pechey tipa SRT-VI krupnotonnazhnoy etilenovoy ustanovki [Optimization of pyrolysis furnaces of the SRT-vi type of large-capacity ethylene plant] / D.V. Arapov // Teoreticheskie osnovy himicheskoy tehnologii. – 2020. – T. 54, № 2. – S. 244-256. – DOI: 10.31857/S0040357120010017.

    [4] Mathematical model of large-tone pyrolysis installations in production of ethylene / D.V. Arapov, S.G. Tikhomirov, S.L. Podvalny, V.A. Kuritsyn // Journal of Physics. Conference Series. – 2019. – Т. 1202. – С. 012024. – DOI: 10.1088/1742-6596/1202/1/012024.

    [5] An experimental and detailed kinetic modeling study of the pyrolysis and oxidation of DMF over a wide range of conditions / L. Liang [et al.] // Combustion and Flame. – 2022. – Vol. 245. – C. 112314. – DOI: 10.1016/j.combustflame.2022.112314.

    [6] Tereza, A.M. Self-ignition and pyrolysis of acetone behind reflected shock waves / A.M Tereza, S.P. Medvedev, V.N. Smirnov // Acta Astronautica. – 2020. – Vol. 176. – Pp. 653-661. – DOI: 10.1016/j.actaastro.2020.03.045.

    [7] Mora, T. Finite Rate Reaction Mechanism Adapted for Modeling Pseudo-Equilibrium Pyrolysis of Cellulose / T. Mora // Processes. – 2022. – Vol. 10(10). – C. 2131. – DOI: 10.3390/pr10102131.

    [8] Substitution reactions in the pyrolysis of acetone revealed through a modeling, experiment, theory paradigm / D.P. Zaleski [et al.] // Journal of American Chemical Society. – 2021. – Vol. 143(8). – Pp. 3124-3142. – DOI: 10.1021/jacs.Oc11677.

    [9] Experimental and theoretical study on acetone pyrolysis in a jet-stirred reactor / D. Yu [et al.] // Fuel. – 2018. – Vol. 234. – Pp. 1380-1387. – DOI: 10.1016/j.fuel.2018.08.020.

    [10] Liu, Y. Effect of acetone content on the preparation period and curing/pyrolysis behavior of liquid policarbosilane / Y. Liu, X. Liu, P. Xu // Applied sciences. – 2020. – Vol. 10(21). – C. 7607. – DOI: 10.3390/app10217607.

    [11] Christensen, M. Laminar burning velocity of diacetyl + air flames. Further assessment of combustion chemistry of ketene / M. Christensen, A.A. Konnov // Combustion and Flame. – 2017. – Vol. 178. – Pp. 97-110. – DOI: 10.1016/j.combustflame.2016.12.026.

    [12] Kotkowski, T. Acetone adsorption on CO2 – activated type pyrolysis char – Thermogravimetric analysis / T. Kotkowski, R. Cherbanski, E. Molga // Chemical and Process Engineering. – 2018. – 39(2). – Pp. 233-246. – DOI: 10.24425/122946.

    [13] Bodrov, V.I. Vybor effektivnoy sistemy upravleniya pechami piroliza s uchetom mnozhestva sostoyaniy funkcionirovaniya / V.I. Bodrov, Yu.L. Muromcev, V.N. Shamkin // Teoreticheskie osnovy himicheskoy tehnologii. – 1987. – T. 21, № 4. – S. 530.

    [14] Kulik, T. Catalytic pyrolysis of aliphatic carboxylic acids into symmetric ketones over ceria-based catalysts: kinetics, isotope effect and mechanism / T. Kulik, B. Palianytsia, M. Larsson // Catalysts. – 2020. – Vol. 10(2). – C. 179. – DOI: 10.3390/catal10020179.

    [15] Safarian, S. Development and comparison of thermodynamic equilibrium and kinetic approaches for biomass pyrolysis modeling / S. Safarian, M. Rydén, M. Janssen // Energies. – 2022. – Vol. 15. – C. 3999. – DOI: 10.3390/en15113999.

    [16] Influence of minor impurities of acetone on soot formation in acetylene shock wave pyrolysis / A.V. Drakon [et al.] // XXXVI International Conference on Interaction of Intense Energy Fluxes with Matter (IIEFM 2021). – Elbrus, Kabardino-Balkaria, 2021. – C. 127.

    [17] Korus, A. Physicochemical properties of biochars prepared from raw and acetone-extracted pine wood / A. Korus, A. Sziek, A. Samson // Fuel Processing Technology. – 2019. – Vol. 185. – Pp. 106-116. – DOI: 10.1016/j.fuproc.2018.12.004.

    [18] Influence of fuel bound oxygen on soot mass and poliaromatic hydrocarbons during pyrolysis of ethanol, methyl acetat, acetone and diethyl ether / Z.A. Khan, P. Hellier, N. Ladommatos, A. Almaleku // Proceedings-Thiesel 2022 Conference on Thermo-and Fluid Dynamics of Clean Propulsion Powerplants. – 2022. – Pp. 1-14. – DOI: 10.4995/Thiesel.2022.632801.

  • С. 34-45.

PHYSICAL AND MATHEMATICAL SCIENCES

DOI: 10.12737/2219-0767-2023-16-1-46-56

M.I. Kolesnikov1, M.E. Kharchenko1, V.A. Dorokhov1, K.V. Zolnikov2

Application of semiconductor electronics products in extreme conditions
  • 1 Voronezh Plant of Semiconductor Devices - Assembly

    2 Scientific research institute electronic engineering

  • A study of the thermal properties of materials used in semiconductor electronics has been carried out. The dependence of the thermal resistance of GaAs diodes on the temperature increase of the product body is determined. They are determined taking into account the design solutions of the housing design of the REA, which can protect components from extreme, difficult conditions, but they increase the weight and complexity of the system. Materials such as SiC, GaAs, GaN, diamond that can withstand extreme conditions may have advantages that go far beyond their electronic characteristics. An example of the application of GaAs-based diode modules of p-i-n diodes developed by JSC "VZPP-S" is given - a three-phase bridge rectifier made according to the Larionov scheme for an electric generator with a power of up to 2750 watts. A methodology for conducting reliability tests has been developed. Short-term tests for the reliability of diode modules at extreme housing temperatures were carried out. The results of the calculation of the thermal resistance of the junction-housing are presented. To simplify the calculation of the thermal resistance of the junction-housing of the developed module, we will make the following assumptions: the materials used in the design of the module diodes have isotropic thermal conductivity; heat exchange in the internal parts of the structure is carried out only by thermal conductivity; there are no contact resistances between the layers; the power dissipated by the terminals of the diode crystals is negligible compared with the power discharged through the lower base into the heat sink; the side surfaces of the thermal model are insulated; each layer of the same material is homogeneous and has a thermal conductivity coefficient determined by the average temperature of the layer; the influence of the thermal effect of neighboring crystals of the module is not taken into account. The algorithm of stationary thermal regime (method of equivalents) of Appendix N OST 11 0944-96 is chosen as the basis of calculation.
  • Ключевые слова — Extreme operating conditions, GaAs diodes, thermal resistance, short-time reliability tests, thermal impedance.

  • [1] Verhulevskiy, K. Vysokotemperaturnye komponenty Microsemi – nadezhnost' v eksremal'nyh usloviyah ekspluatacii [High–temperature Microsemi components - reliability in extreme operating conditions] / K. Verhulevskiy // Silovaya elektronika. – 2014. – № 6. – S. 14-20.

    [2] An Experimental Setup Based on a Printable System for the Acquisition of the Real-Time Electrical Response of Irradiated Semiconductor Devices / A. Quenon, A. Demarbaix, E. Daubie [et al.] // IEEE Transactions on Instrumentation and Measurement. – 2023. - Vol. 72. - Pp. 1-8. – DOI: 10.1109/TIM.2022.3228260.

    [3] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice / F. Shan [et al] // Chinese Physics B. – 2022. – Vol. 31. – C. 036104. – DOI: 10.1088/1674-1056/ac16cb.

    [4] He, J. Comparison between the ultra-wide band gap semiconductor AlGaN and GaN / J. He // IOP Conference Series Materials Science and Engineering. – 2020. – Vol. 738. – C. 012009. – DOI: 10.1088/1757-899X/738/1/012009.

    [5] Aseev, A.L. Semiconductor Nanostructures for Modern Electronics / A.L. Aseev, A.V. Latyshev, A.V. Dvurechenskii // Advanced Research in Materials Science III. – 2020. – Vol. 310, № 10. – Pp. 65-80. – DOI: 10.4028/www.scientific.net/SSP.310.65.

    [6] Song, H. Electronic microstructure and thermal conductivity modeling of semiconductor nanomaterials / H. Song, C. Yin, H. Qu // Microelectronics Journal. – 2021. – Vol. 108. – C. 104988. – DOI: 10.1016/j.mejo.2020.104988.

    [7] Setera, B. Challenges of overcoming defects in wide bandgap semiconductor power electronics / B. Setera, A. Christou // Electronics. – 2022. – Vol. 11(1). – C. 10. – DOI: 10.3390/electronics11010010.

    [8] Radiation‐Tolerant Electronic Devices Using Wide Bandgap Semiconductors / Z. Muhammad [et al.] // Advanced Materials Technologies. – 2022. – Vol. 8(2). – C. 2200539. – DOI: 10.1002/admt.202200539.

    [9] Derbyshire К. IC Materials For Extreme Conditions. – URL: https://semiengineering.com/ic-materials-for-extreme-conditions (дата обращения: 18.01.2023).

    [10] Rasporyazhenie Pravitel'stva RF ot 17 yanvarya 2020 g. № 20-r O Strategii razvitiya elektronnoy promyshlennosti RF na period do 2030 g. i plane meropriyatiy po ee realizacii [On the Strategy for the Development of the Electronic Industry of the Russian Federation for the Period up to 2030 and the action plan for its implementation].

    [11] Borisov, P.A. Raschet i modelirovanie vypryamiteley [Calculation and modeling of rectifiers] / P.A. Borisov, V.S. Tomasov. – SPb. : SPb GUITMO, 2009. – 169 s.

    [12] OST 11 0944-96. Mikroshemy integral'nye i pribory poluprovodnikovye. Metody rascheta, izmereniya i kontrolya teplovogo soprotivleniya [Integrated circuits and semiconductor devices. Methods of calculation, measurement and control of thermal resistance]. – M. : GUP NPP Pul'sar, 1997. – 110 c.

    [13] Spravochnik po svoystvam veschestv i materialov: plotnost', teploprovodnost', teploemkost', vyazkost' i drugie fizicheskie svoystva [Handbook on the properties of substances and materials: density, thermal conductivity, heat capacity, viscosity and other physical properties]. – URL: http://thermalinfo.ru (data obrascheniya: 18.01.2023).

    [14] Coulter R. NASA Glenn Demonstrates Electronics for Longer Venus Surface Missions. – URL: https://www.nasa.gov/press-release/nasa-glenn-demonstrates-electronics-for-longer-venus-surface-missions (дата обращения: 18.01.2023).

    [15] Luchinin, V. Otechestvennaya ekstremal'naya EKB: karbidokremnievaya industriya SPbGETU "LETI" [Domestic extreme ECB: silicon carbide industry SPbGETU "LETI"] / V. Luchinin // Nano industriya – 2016. – №3. – S. 78-89.

    [16] Ispytaniya radioelektronnoy apparatury na stoykost' k vozdeystviyu impul'snogo gamma-izlucheniya v usloviyah povyshennoy temperatury [Tests of radio-electronic equipment for resistance to the effects of pulsed gamma radiation at elevated temperatures] / E.Yu. Bahmatov [i dr.] // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2022. – № 4. – S. 38-41.

    [17] Vorob'eva, I.V. Osobennosti degradacii spektral'nyh harakteristik SII GAAS-fotodiodov pri neytronnom obluchenii [Features of degradation of spectral characteristics of SI GAAS photodiodes under neutron irradiation] / I.V. Vorob'eva, S.M. Dubrovskih, O.V. Tkachev // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2022. – № 2. – S. 11-18.

    [18] Kombaev, T.Sh. Ocenka trebovaniy k stoykosti po dozovomu effektu ispol'zuemyh v bortovoy apparature elektroradioizdeliy pri polete kosmicheskogo apparata k saturnu [Assessment of the requirements for resistance to the dose effect of electrical and radio components used in the onboard apparatus during the flight of the spacecraft to Saturn] / T.Sh. Kombaev, M.E. Artemov, N.M. Hamidullina // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2022. – № 2. – S. 34-36.

    [19] Nezamutdinov, F.F. Opredelenie sroka sluzhby radiacionno-stoykoy apparatury dlya zadachi monitoringa morskoy akvatorii [Determination of the service life of radiation-resistant equipment for the task of monitoring the marine water area] / F.F. Nezamutdinov, S.A. Filatov // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2021. – № 4. – S. 24-27.

    [20] Tapero, K.I. Problemnye voprosy ocenki stoykosti elektronnoy komponentnoy bazy k vozdeystviyu pogloschennoy dozy ioniziruyuschego izlucheniya kosmicheskogo prostranstva [Problematic issues of assessing the resistance of an electronic component base to the effects of an increased dose of ionizing radiation from outer space] / K.I. Tapero // Voprosy atomnoy nauki i tehniki. Seriya: Fizika radiacionnogo vozdeystviya na radioelektronnuyu apparaturu. – 2021. – № 4. – S. 5-14.

  • С. 46-56.

DOI: 10.12737/2219-0767-2023-16-1-56-66

Ph.V. Makarenko1, A.S. Yagodkin1, O.A. Denisova1, A.V. Poluektov1, A.I. Zarevich1, V.I. Silonov1

The use of elements of negative logic in the construction of an energy-efficient combinational device
  • 1 Voronezh State University of Forestry and Technologies named after G.F. Morozov

  • Definitions are given and the difference between positive and negative algebra of logic is indicated. It is noted that when switching from positive logic to negative, the elements of "Schaeffer's Stroke" and "Pierce's Arrow" change places. Similarly, conjunction changes with disjunction. The inverter retains its property regardless of its application in positive or negative logic. The laws and rules valid for the negative algebra of logic are presented. The method of transition from the positive algebra of logic to the negative one is presented. Elements of positive and negative logic are compared. On the basis of logic functions: (AᴧBᴧC)ᴧDvAᴧ(BᴧCᴧD)vAᴧ(BᴧC)ᴧDv(AᴧB)ᴧ(CᴧD), implemented by direct optimized, minimal, options matching device, as well as, the final options in bases 2-NOT-OR (2-AND-NOT), 4-NOT-OR (4-AND-NOT) for negative logic. The voltage table of K155LE1, K155LE3 microcircuits is presented. The truth table of K155LE1, K155LE3 microcircuits in negative logic algebra (as an element AND-NOT or NOT-OR) is presented. Truth tables of K176LE5, K176LE6 microcircuits are shown in positive logic algebra (OR-NOT). The voltage table of K176LE5, K176LE6 microcircuits is shown. The truth table of K176LE5, K176LE6 microcircuits is shown in negative logic algebra (as an AND-NOT or NOT-OR element). elements of negative logic. Conclusion about the results.
  • Ключевые слова — Negative logic, combinational logic device, 2NOT-OR, 2AND-NOT, 2OR-NOT, 4NOT-OR, 4AND-NOT, 4OR-NOT, K155LE1, K155LE3, K176LE5, K176LE6.

  • [1] Aleksenko, A.G. Osnovy mikroshemotehniki [Fundamentals of microcircuitry] / A.G. Aleksenko. – M.: Yunimediastayl, 2002. – 448 s.

    [2] Amosov, V.V. Shemotehnika i sredstva proektirovaniya cifrovyh ustroystv [Circuit engineering and design tools for digital devices] / V. V. Amosov. – SPb.: BHV-Peterburg, 2007. – 560 s.

    [3] Zel'din, E.A. Cifrovye integral'nye mikroshemy v informacionno-izmeritel'noy apparature [Digital integrated circuits in information and measuring equipment] / E.A. Zel'din. – L. : Energoatomizdat, 1986. – 280 s.

    [4] Mikroprocessory i mikroprocessornye komplekty integral'nyh mikroshem [Microprocessors and microprocessor sets of integrated circuits]: spravochnik: V 2 t. / N.N. Aver'yanov, A.I. Berezenko, Yu.I. Borschenko [i dr.]. – M. : Radio i svyaz', 1988. – T. 2. – 368 s.

    [5] Reconfigurable Boolean logic in memristive crossbar: the principle and implementation / S.-Y. Hu, Y. Li, L. Cheng [et al.] // IEEE Electron Device Letters. – 2018. – Vol. 40, № 2. – Pp. 200–203. – DOI: 10.1109/LED.2018.2886364.

    [6] Novikov, Yu.V. Osnovy cifrovoy shemotehniki. Bazovye elementy i shemy. Metody proektirovaniya [Fundamentals of digital circuitry. Basic elements and schemes. Design methods] / Yu.V. Novikov. – M. : Mir, 2001. – 379 s.

    [7] Primenenie integral'nyh mikroshem v elektronnoy vychislitel'noy tehnike: cpravochnik [Application of integrated circuits in electronic computing] / R. V. Danilov, S.A. El'cova, Yu. P. Ivanov [i dr.]. – M. : Radio i svyaz', 1987. – 384 s.

    [8] Solomatin, N.M. Logicheskie elementy EVM [Logical elements of a computer] / N.M. Solomatin. – M. : Vysshaya shkola, 1990. – 160 s.

    [9] Proektirovanie interfeysov sboeustoychivyh mikroshem [Designing interfaces of fault-resistant microcircuits] / V.K. Zol'nikov, N.V. Mozgovoy, S.V. Grechanyy, I.N. Selyutin, I.I. Strukov // Modelirovanie sistem i processov. – 2020. – T. 13, № 1. – S. 17-24. – DOI: 10.12737/2219-0767-2020-13-1-17-24.

    [10] Efficient implementation of Boolean and full-adder functions with 1T1R RRAMs for beyond von Neumann in-memory computing / Z. Wang, Y. Li, Y. Su [et al.] // IEEE Trans Electron Devices. – 2018. – Vol. 65, № 10. – Pp. 4659–4666. – DOI: 10.1109/TED.2018.2866048.

    [11] Dvuhsloynye logicheskie elementy dlya klassicheskih kriogennyh komp'yuterov [Two-layer logic elements for classical cryogenic computers] / B. A. Gurovich, K. E. Prihod'ko, L. V. Kutuzov [i dr.] // Fizika tverdogo tela. – 2022. – T. 64, № 10. – S. 1390-1398. – DOI: 10.21883/FTT.2022.10.53079.47HH.

    [12] Stenin, V.Ya. Osobennosti obrazovaniya impul'sov oshibok na vyhode KMOP troynogo mazhoritarnogo elementa na logike i-ne pri sbore zaryada s trekov odinochnyh ioniziruyuschih chastic [eatures of the formation of error pulses at the output of the CMOS of a triple majority element on the logic and-not when collecting a charge from tracks of single ionizing particles] / V. Ya. Stenin, Yu.V. Katunin // Vestnik Nacional'nogo issledovatel'skogo yadernogo universiteta MIFI. – 2021. – T. 10, № 3. – S. 244-252. – DOI: 10.1134/S2304487X21030123.

    [13] Ermolaeva, O.L. Pinning domennyh stenok v dvuhsloynoy ferromagnitnoy nanoprovoloke polyami rasseyaniya nanochastic [Pinning of domain walls in a two-layer ferromagnetic nanowire by nanoparticle scattering fields] / O.L. Ermolaeva, V.L. Mironov // Fizika tverdogo tela. – 2017. – T. 59, № 11. – S. 2163-2168. – DOI: 10.21883/FTT.2017.11.45055.14k.

    [14] Carlet, C. Boolean functions for cryptography and error correcting codes / C. Carlet // Boolean Models and Methods in Mathematics, Computer Science, and Engineering. – 2010. - Vol. 2. – 257 p.

    [15] Stenin, V.Ya. KMOP mazhoritarnyy element na osnove I-NE logiki s ponizhennoy chuvstvitel'nost'yu k vozdeystviyu odinochnyh ioniziruyuschih chastic [CMOS majority element based on logic with reduced sensitivity to the effects of single ionizing particles] / V.Ya. Stenin, Yu. V. Katunin // Mikroelektronika. – 2021. – T. 50, № 6. – S. 435-444. – DOI: 10.31857/S0544126921050070.

    [16] Komshin, A. Sborka RS-triggera na mikroshemah, soderzhaschih elementy "ILI-NE", "I-NE" [Assembling an RS trigger on microcircuits containing elements "OR-NOT", "AND-NOT"] / A. Komshina, S. Telibaev, B.S. Mihlin, // Informatika v shkole. – 2018. – № 7(140). – S. 17-25. – DOI: 10.32517/2221-1993-2018-17-7-17-25.

    [17] Osobennosti proektirovaniya bazovyh elementov mikroshem kosmicheskogo naznacheniya [Design features of basic elements of space-purpose microcircuits] / V.K. Zol'nikov, T.V. Skvorcova, I.I. Strukov [i dr.] // Modelirovanie sistem i processov. – 2020. – T. 13, № 3. – S. 66-70. – DOI: 10.12737/2219-0767-2020-13-3-66-70.

    [18] Carlet, C. A larger class of cryptographic Boolean functions via a study of the Maiorana-McFarland construction / C. Carlet // Lecture Notes in Computer Science. – 2002. – Vol. 2442. – Pp. 549-564. – DOI: 10.1007/3-540-45708-9_35.

    [19] Cryptographic Boolean functions: one output, many design criteria / S. Picek, D. Jakobovic, J.F. Miller [et al.] // Applied Soft Computing. – 2016. – Vol. 40. – C. 635. – DOI: 10.1016/j.asoc.2015.10.066.

    [20] Pravil'schikov, P. A. Novye kvantovye odnorodnye i neodnorodnye logicheskie elementy "i-ne" i "ravnoznachnost' [New quantum homogeneous and heterogeneous logic elements "and-not" and "equivalence"] / P.A. Pravil'schikov // Informacionnye tehnologii v proektirovanii i proizvodstve. – 2019. – № 3(175). – S. 17-27.

    [21] Stenin, V.Ya. Maskirovanie impul'sov pomeh pri sbore zaryada s trekov odinochnyh ioniziruyuschih chastic v mazhoritarnom elemente na osnove KMOP logiki I-NE [Masking of interference pulses when collecting charge from tracks of single ionizing particles in a majority element based on CMOS logic and-NOT] / V.Ya. Stenin, Yu.V. Katunin // Mikroelektronika. – 2022. – T. 51, № 1. – S. 41-47. – DOI: 10.31857/S0544126922010094.

    [22] Katunin, Yu.V. Kompensaciya impul'sov pomeh v troichnom KMOP mazhoritarnom elemente na logicheskih elementah i-ne pri vozdeystvii odinochnyh ioniziruyuschih chastic [Compensation of interference pulses in a ternary CMOS majority element on logic elements and-not under the influence of single ionizing particles] / Yu.V. Katunin, V.Ya. Stenin // Vestnik Nacional'nogo issledovatel'skogo yadernogo universiteta MIFI. – 2019. – T. 8, № 4. – S. 342-349. – DOI: 10.1134/S2304487X19040060.

    [23] Razrabotka i analiz logicheskih elementov "ILI-NE", "I-NE" i "isklyuchayuschee ILI-NE" na osnove effekta interferencii [Development and analysis of logic elements "OR-NOT", "AND-NOT" and "exclusive OR-NOT" based on the interference effect] / Sun' Syao-Ven', Yan Syu-Lun', Men Syan-Fen [i dr.] // Kvantovaya elektronika. – 2018. – T. 48, № 2. – S. 178-183.

    [24] Razrabotka stenda raspredelitel' impul'sov [Development of the pulse distributor stand] / M.I. Yanov, V.S. Shishkin, F.R. Ahmadullin, I.G. Kulikova // Sovremennaya shkola Rossii. Voprosy modernizacii. – 2021. – № 3-2(36). – S. 89-93.

    [25] Petrosyan, K.O. Development of methods for constructing high-speed decoders with low power consumption of random access memory [Development of methods for constructing high-speed decoders with low power consumption of random access memory] / K. O. Petrosyan // Proceedings of National Polytechnic University of Armenia. Information Technologies, Electronics, Radio Engineering. – 2019. – No 2. – Pp. 99-108.

    [26] Zhang, W.G. Improving the lower bound on the maximum nonlinearity of 1-resilient Boolean functions and designing functions satisfying all cryptographic criteria / W.G. Zhang, P. Enes // Information Sciences. – 2016. – Vol. 376. – C. 21.

    [27] Π-kontakty v yacheykah adiabaticheskoy sverhprovodnikovoy logiki [Π-contacts in cells Adiabatic superconducting logic] / I.I. Solov'ev, G.S. Hismatullin, N.V. Klenov, A.E. Schegolev // Radiotehnika i elektronika. – 2022. – T. 67, № 12. – S. 1232-1244. – DOI: 10.31857/S003384942212021X.

    [28] Tang, D. Highly nonlinear Boolean functions with optimal algebraic immunity and good behavior against fast algebraic attacks / D. Tang, C. Carlet, X.H. Tang // IEEE Transactions on Information Theory. – 2013. – Vol. 59, № 1. – Pp. 653-664. – DOI: 10.1109/TIT.2012.2217476.

    [29] Chen, T. An anonymous key agreement protocol with robust authentication for smart grid infrastructure / T. Chen, Q. Cheng, X. Li // Science China Information Sciences. – 2022. – Vol. 65, № 9. – S. 199101. – DOI: 10.1007/s11432-019-2736-5.

    [30] Moniem, T.A. Polnost'yu opticheskiy logicheskiy element "isklyuchayuschee ILI – NE" na osnove dvumernyh fotonno-kristallicheskih kol'cevyh rezonatorov [Fully optical logic element "exclusive OR – NOT" based on two-dimensional photonic crystal ring resonators] / T.A. Moniem // Kvantovaya elektronika. – 2017. – T. 47, № 2. – S. 169-172.

    [31] Shagurin, I.I. Tranzistorno-tranzistornye logicheskie shemy [Transistor-transistor logic circuits] / I.I. Shagurin. – M., 1974. – 158 s.

    [32] Presnuhin, L.N. Raschet elementov cifrovyh ustroystv [Calculation of elements of digital devices] / L.N. Presnuhin, N.V. Vorob'ev, A.A. Shishkevich. – M. : Vysshaya shkola, 1991. – 526 s.

    [33] Goryachev, V. Dvuhkanal'nyy ShIM v bazise elementov ILI-NE [Two-channel PWM in the basis of elements OR-NOT] / V. Goryachev, A. Chuprin // Pervaya milya. – 2017. – № 5(66). – S. 64-71. – DOI: 10.22184/2070-8963.2017.66.5.64.71.

  • С. 56-66.

DOI: 10.12737/2219-0767-2023-16-1-67-77

A.E. Pisarev1, S.V. Pisareva2

Methods of calculation and evaluation of a thermionic plasma-drop generator with magnetic charge separation
  • 1National Research nuclear university MEPHI, This email address is being protected from spambots. You need JavaScript enabled to view it.

    2Voronezh State University of Forestry and Technologies named after G.F. Morozov

  • The development of design solutions and preliminary calculation substantiation of the characteristics of a high-voltage plasma-drop generator with magnetic charge separation have been completed. The aim of the study was to confirm the possibility of creating a current source with an operating voltage of about 107 V. The proposed energy conversion method is based on the separation of charged drops from dusty plasma in a gradient magnetic field. Droplets are charged due to thermal emission from their surface. A schematic description of the generator is presented and an elementary calculation model is proposed. This model is divided into 4 blocks that describe the various processes taking place in the device. The assumptions and simplifications necessary for the evaluation are discussed. Preliminary calculation data on the efficiency of a plasma-drop generator with magnetic charge separation have been obtained under conditions close to those actually achievable by manufacturing technologies. The main parameters for evaluation were power, efficiency, voltage and magnetic field induction. As a result of the calculations performed, the fundamental possibility of creating a workable plasma-drop generator based on the proposed solutions is shown. The results obtained are not accurate and require further improvement of the model and study of the processes taking place in the generator.
  • Ключевые слова — Dusty plasma, thermionic emission, magnetic mirrors, bulk condensation, direct energy conversion.

  • [1] Stahanov, I.P. Fizika termoemissionnogo preobrazovatelya [Physics of a thermoemission converter] / I.P. Stahanov, V.E. Cherkovec. – M. : Energoatomizdat, 1985. – 208 s.

    [2] Zhuhovickiy, D.I. Ionizacionnoe ravnovesie v plazme s kondensirovannoy dispersnoy fazoy. Himiya plazmy (PlasmaChemistry) [Ionization equilibrium in a plasma with a condensed dispersed phase. Plasma chemistry (PlasmaChemistry)] / D.I. Zhuhovickiy, A.G. Hrapak, I.T. Yakubov. – M. : Energoatomizdat, 1984. – 130 s.

    [3] Sodha, M.S. PHYSICS OF COLLOIDAL PLASMAS / M.S. Sodha, S. Guha // Advanced Plasma physics. – 1971. – Vol. 4. – Pp. 219-309.

    [4] Soo, S.L. Multiphase Fluid Dynamics / S.L. Soo. - Brookfield: Gower Technical, 1990. – Pp. 427-449.

    [5] Pylevaya plazma [Dust plasma] / V.E, Fortov, A.G. Hrapak, S.A. Hrapak [i dr.] // Uspehi fizicheskih nauk. – 2004. – T. 174, № 5. – S. 495-544. – DOI: 10.3367/UFNr.0174.200405b.0495.

    [6] Razrabotka tehnologii termoemissionnogo preobrazovaniya energii na osnove kapel'no-plazmennoy rabochey sredy [Development of technology for thermionic energy conversion based on a drip-plasma working medium] / D.G. Lazarenko, G.E. Lazarenko, P.I. Prudnikov, I.I. Andryushin // Nauchno-tehnicheskiy vestnik Povolzh'ya. – 2013. – № 1. – S. 28-30.

    [7] Vishnyakov, V.I. Thermodynamic reasons of agglomeration of dust particles in the thermal dusty plasma / V.I. Vishnyakov, G.S.Dragan // Condensed Matter Physics. – 2003. – Vol. 6, No. 4(36). – Pp. 687-692. – DOI: 10.5488/CMP.6.4.687.

    [8] Smirnov, B.M. Processy v plazme i gazah s uchastiem klasterov [Processes in plasma and gases involving clusters] / B.M. Smirnov // Uspehi fizicheskih nauk. – 1997. – T. 167, № 11. – S. 1169-1200.

    [9] Yakubov, I.T. Thermophysical and electrophysical properties of low temperature plasma with condensed disperse phase / I.T. Yakubov, A.G. Khrapak // Soviet Technology Reviews. Section B: Thermal Physics Reviews. – 1989. – Т. 2. – С. 269.

    [10] Kutepov, A.M. Gidrodinamika i teploobmen pri paroobrazovanii [Hydrodynamics and heat exchange during vaporization] / A.M. Kutepov, L.S. Sterman, N.G. Styushin. – M. : Vysshaya shkola, 1986. – 352 s.

    [11] Pisarev, A.E. Kinetika zaryadki nizkotemperaturnoy plazmy [Kinetics of low-temperature plasma charging] / A.E. Pisarev // Arktika: innovacionnye tehnologii, kadry, turizm. – 2021. – № 1(3). – S. 90-94.

    [12] Sodha, M.S. Kinetics of Complex Plasmas with Liquid Droplets / M.S. Sodha // Springer Series on Atomic, Optical, and Plasma Physics (SSAOPP), 2014. – Pp. 263-275.

    [13] Gavrikov, A.V. Plazmenno-pylevye struktury pri vneshnih vozdeystviyah: zaryadka makrochastic, ih dinamika i yavleniya perenosa [Plasma-dust structures under external influences: charging of macroparticles, their dynamics and transfer phenomena] : special'nost' 01.04.08 Fizika plazmy : dis. … d-ra f.-m. nauk : zaschischena 20.05.2019 / Gavrikov Andrey Vladimirovich. – M., 2019. – 110 s.

    [14] Pisarev, A.E. Separaciya pylevoy plazmy magnitnymi zerkalami [Separation of dust plasma by magnetic mirrors] / A.E. Pisarev // Fizicheskie osnovy sovremennyh naukoemkih tehnologiy : sbornik Mezhdunarodnogo nauchno-metodicheskogo seminara, posvyaschennogo 100-letiyu so dnya rozhdeniya professora A.L. Gutmana. – Voronezh, 2022. – S. 106-109.

    [15] Sinel'nikov, K.D. Lekcii po fizike plazmy [Lectures on plasma physics] / K.D. Sinel'nikov, B.N. Rutkevich. – Har'kov,1964. – 242 s.

    [16] Rouz, D. Fizika plazmy i upravlyaemye termoyadernye reakcii [Plasma physics and controlled thermonuclear reactions] / D. Rouz, M. Klark. – M. : Gosatomizdat, 1963. – 487 s.

    [17] Bernstein, W. Oscillations in the B-1 Stellarator / W. Bernstein, A.Z. Kranz, F. Tenney // Physics of Fluids. – 1959. – Vol. 2. – C. 713. – DOI: 10.1063/1.1705976.

    [18] The Divertor, a Device for Reducing the Impurity Level in a Stellarator / C.R. Burnett, D.J. Grove, W.R. Palladino [et al.] // Wakefield Physics of Fluids. - 1958. – Vol. 1. – C. 438. – DOI: 10.1063/1.1724361.

    [19] Grigor'ev, I.S. Fizicheskie velichiny [Physical quantities] : spravochnik / I.S. Grigor'ev, E.Z. Meylihov. – M. : Energoatomizdat, 1991. – 1232 s.

    [20] Gosudarstvennaya sluzhba standartnyh spravochnyh dannyh v oblasti ispol'zovaniya atomnoy energii «ROSATOM» NIYaU MIFI. Teplofizicheskie svoystva zhidkogo kaliya i ego para [The State Service of Standard Reference Data in the Field of Atomic Energy Use "ROSATOM" of the NRU MEPhI. Thermophysical properties of liquid potassium and its vapor]. – URL: http://gsssd-rosatom.mephi.ru/DB-tp-01/K.php (data posescheniya: 07.02.2023).

    [21] Jerby, E. Localized microwave-heating (LMH) of basalt – Lava, dusty-plasma, and ball-lightning ejection by a «miniature volcano» / E. Jerby, Y. Shoshani // Scientific Reports. – 2019. – V. 9. – C. 12954. – DOI: 10.1038/s41598-019-49049-5.

    [22] Davari, H. Particle simulation of the strong magnetic field effect on dust particle charging process / H. Davari, B. Farokhi, M. Ali Asgarian // Scientific Reports. – 2023. – V. 13. – C. 1111. – DOI: 10.1038/s41598-023-28310-y.

    [23] Formation of solid helical filaments at temperatures of superfluid helium as self-organization phenomena in ultracold dusty plasma / R.E. Boltnev, M.M. Vasiliev, E.A. Kononov [et al.] // Scientific Reports. – 2019. – V. 9. – C. 3261. – DOI: 10.1038/s41598-019-40111-w.

    [24] Tao, L.-L. Effects of the dust size distribution on shock waves in dusty plasma / L.-L. Tao, W.-S. Duan // Chinese Journal of Physics. – 2020. – Vol. 68. – Pp. 950-960. – DOI: 10.1016/j.cjph.2020.10.031.

    [25] Envelope solitons of the nonlinear discrete vertical dust grain oscillation in dusty plasma crystals / A. Houwe, S. Abbagari, M. Inc [et al.] // Chaos, Solitons & Fractals. – 2022. – Vol. 155(6). – C. 111640. – DOI: 10.1016/j.chaos.2021.111640.

    [26] Loseva, T.V. Pylevye ionno-akusticheskie udarnye volny v laboratornoy, ionosfernoy i astrofizicheskoy plazme [Dusty ion-acoustic shock waves in laboratory, ionospheric and astrophysical plasma] / T.V. Loseva, S.I. Popel', A.P. Golub' // Fizika plazmy. – 2020. – T. 46, № 11. – S. 1007-1025. – DOI: 10.31857/S0367292120110049.

    [27] Processy zaryadki pylevyh chastic v zamagnichnoy plazme gazovogo razryada [Charging processes of dust particles in a magnetized plasma of a gas discharge] / N.H. Bastykova, S.K. Kodanova, T.S. Ramazanov, Zh.A. Moldabekov // Vestnik Kazahskogo Nacional'nogo Universiteta. Seriya fizicheskaya. – 2020. - № 1 (72). – S. 42-48. – DOI: 10.26577/RCPh.2020.v72.i1.05.

    [28] Shumova, V.V. Elektrofizicheskie parametry plazmy s zaryazhennym pylevym oblakom [Electrophysical parameters of a plasma with a charged dust cloud] / V.V. Shumova, D.N. Polyakov, L.M. Vasilyak // Himicheskaya fizika. – 2020. – T. 39, № 12. – S. 37-42. – DOI: 10.31857/S0207401X20120134.

    [29] Odnovremennoe vliyanie vneshnego magnitnogo polya i sily treniya na lokalizaciyu chastic dvumernoy Yukava sistemy [Simultaneous influence of an external magnetic field and friction force on the localization of particles of a two-dimensional Yukawa system] / R.U. Masheeva, K.N. Dzhumagulova, T.S. Ramazanov, Z. Donko // Evrazskiy soyuz uchenyh. – 2018. - № 4(49). – S. 48-53.

    [30] Rasprostranenie trehmernogo fronta kristallizacii v sil'noneideal'noy pylevoy plazme [Propagation of a three-dimensional crystallization front in a highly ideal dust plasma] / D.I. Zhuhovickiy, V.N. Naumkin, A.I. Husnulgatin [i dr.] // Zhurnal eksperimental'noy i teoreticheskoy fiziki. – 2020. – T. 157, № 4. – S. 734-744. – DOI: 10.31857/S0044451020040173.

    [31] Fayrushin, I.I. Analiticheskiy raschet sostava termicheskoy pylevoy plazmy s metallicheskimi chasticami [Analytical calculation of the composition of thermal dust plasma with metal particles] / I.I. Fayrushin // Himiya vysokih energiy. – 2020. – T. 54, № 6. – S. 497-500. – DOI: 10.31857/S0023119320060042.

    [32] Issledovaniya pylevoy gazorazryadnoy plazmy na kosmicheskoy ustanovke «plazmennyy kristall-3 Plyus» (obzor) [Studies of dusty gas-discharge plasma at the Plasma crystal–3 Plus space installation (review)] / A.M. Lipaev, V.I. Molotkov, D.I. Zhuhovickiy [i dr.] // Teplofizika vysokih temperatur. – 2020. – T. 58, № 4. – S. 485-514. – DOI: 10.31857/S0040364420040092.

    [33] Vliyanie raznyh processov elektronnoy emissii na sverhvysokuyu zaryadku pylevoy chasticy v plazme puchkom energeticheskih elektronov [The influence of various electron emission processes on the ultrahigh charging of a dust particle in plasma by a beam of energetic electrons] / Yu.S. Akishev, A.A. Balakirev, V.B. Karal'nik [i dr.] // Nizkotemperaturnaya plazma v processah naneseniya funkcional'nyh pokrytiy. – 2019. – T. 10, № 1. – S. 274-279.

  • С. 67-77.

DOI: 10.12737/2219-0767-2023-16-1-77-84

A.V. Poluektov1, F.V. Makarenko1, R.Yu. Medvedev1

Computer simulation of the operation of transistors and semiconductor devices based on it
  • 1Voronezh State University of Forestry and Technologies named after G.F. Morozov

  • The technology of modeling a field-effect transistor in the CAD system COMSOL Multiphysics is considered. The possibilities of CAD, its methods of graphical construction of the model and methods of modeling the behavior of the model are being studied. The object of study is the MOS transistor, its scope, operation and a mathematical model that can be used in designing its operation. The Shikhman-Hodges model, input and output parameters are determined, the degree of its adequacy to a real transistor is set, the main parameters are determined, with the help of which it is possible to conduct a study of a field-effect transistor, its current-voltage characteristic. A transistor model is built in the mode of operation in the mode of small-signal amplifiers, replacing it with a linear four-port model, it is described when this model can be applied when simulating the operation of the device.
  • Ключевые слова — Model, mathematical model, computer model, CAD, COMSOL Multiphysics, MOSFET, Shichman-Hodges model, current-voltage characteristic, small-signal amplifier mode.

  • [1] Kachestvennaya teoriya dinamicheskih sistem vtorogo poryadka [Qualitative theory of dynamical systems of the second order] / A.A. Andronov, E.A. Leontovich, M.I. Gordon, A.G. Mayer. – M. : Nauka, 1966. – 568 s.

    [2] Nagornov, Yu.S. Modelirovanie atomarnyh processov v nanokristallah metodom Monte-Karlo [Modeling of atomic processes in nanocrystals by the Monte Carlo method] : metodicheskie rekomendacii / Yu.S. Nagornov. – Tol'yatti: TGU, 2012. – 19 s.

    [3] Matematicheskoe modelirovanie v sisteme «Stratum Computer» [Mathematical modeling in the Stratum Computer system] / D.V. Bayandin, A.V. Kubyshkin, O.I. Muhin, A.A. Ryabuha // Problemy obrazovaniya, nauchno-tehnicheskogo razvitiya i ekonomiki Ural'skogo regiona : sbornik trudov Vserossiyskoy nauchno-prakticheskoy konferencii. - Berezniki, 1996. - S. 80-81.

    [4] Zol'nikov, V.K. Modelirovanie i analiz proizvoditel'nosti algoritmov balansirovki nagruzki oblachnyh vychisleniy [Modeling and performance analysis of cloud computing load balancing algorithms] / V.K. Zol'nikov, O.V. Oksyuta, N.F. Dayub // Modelirovanie sistem i processov. – 2020. – T. 13, № 1. – S. 32-39. – DOI: 10.12737/2219-0767-2020-13-1-32-39.

    [5] Sistema upravleniya raspredeleniem rabot pri proektirovanii slozhnyh tehnicheskih sistem [The control system for the distribution of work in the design of complex technical systems] / T.P. Novikova, K.V. Zol'nikov, A.Yu. Kulay [i dr.] // Informacionnye tehnologii v upravlenii i modelirovanii mehatronnyh sistem : sbornik materialov 1-y nauchno-prakticheskoy mezhdunarodnoy konferencii. – Tambov, 2017. – S. 199-204.

    [6] Yudina, N.Yu. Analiz faktorov, okazyvayuschih vliyanie na nadezhnost' strukturnyh elementov slozhnyh vychislitel'nyh sistem [Analysis of factors influencing the reliability of structural elements of complex computing systems] / N.Yu. Yudina, A.N. Kovalev // Modelirovanie sistem i processov. – 2017. – T. 10, № 3. – S. 86-93. – DOI: 10.12737/article_5a2928416cdb36.94937249.

    [7] Opredelenie sobstvennyh teplovyh soprotivleniy silovyh tranzistorov i diodov IGBT modulya na osnove ego trehmernoy modeli / M. V. Il'in, E. A. Vilkov, I. V. Gulyaev, F. Briz Del' Blanko // Elektrotehnika. – 2019. – № 7. – S. 19-23.

    [8] V'yurkov, V.V. Proletnye diody i tranzistory s peremennoy inzhekciey kak generatory i detektory izlucheniya teragercovogo diapazona [Span diodes and transistors with variable injection as generators and detectors of terahertz radiation] / V.V. V'yurkov, K.V. Rudenko, V.F. Lukichev // SVCh-tehnika i telekommunikacionnye tehnologii. – 2020. – № 1-1. – S. 320-321.

    [9] Maksimenko, Yu.N. Moschnyy vysokovol'tnyy tranzistor so staticheskoy indukciey s antiparallel'nym diodom [A powerful high-voltage transistor with static induction with an antiparallel diode] / Yu.N. Maksimenko // Elektronnaya tehnika. Seriya 2: Poluprovodnikovye pribory. – 2022. – № 3(266). – S. 55-62. – DOI: 10.36845/2073-8250-2022-266-3-56-62.

    [10] Kondusov, V.V. Avtomatizirovannaya zondovaya stanciya dlya ispytaniya elektricheskih parametrov kristallov diodov i tranzistorov [Automated probe station for testing the electrical parameters of crystals of diodes and transistors] / V.V. Kondusov, V.A. Kondusov // Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. – 2019. – T. 15, № 5. – S. 105-110. – DOI: 10.25987/VSTU.2019.15.5.014.

    [11] Analiticheskaya model' proletnyh diodov i tranzistorov dlya generacii i detektirovaniya teragercovogo izlucheniya [Analytical model of span diodes and transistors for generation and detection of terahertz radiation] / K.V. Rudenko, M.K. Rudenko, I.A. Semenihin [i dr.] // Mikroelektronika. – 2018. – T. 47, № 5. – S. 14-21. – DOI: 10.31857/S054412690001732-2.

    [12] Sposob snizheniya dinamicheskih poter' v polumostovoy tranzistornoy sheme [A method for reducing dynamic losses in a half-bridge transistor circuit] / O.A. Danilov, A.L. Ivanov, S.A. Il'in [i dr.] // Vestnik Chuvashskogo universiteta. – 2020. – № 1. – S. 89-96.

    [13] Dunaev, M.P. Modelirovanie poter' moschnosti v preobrazovatele chastoty [Modeling of power losses in a frequency converter] / M.P. Dunaev, S.U. Dovudov // Elektrotehnicheskie sistemy i kompleksy. – 2021. – № 2 (51). – S. 45-51. – DOI: 10.18503/2311-8318-2021-2(51)-45-51.

    [14] Rentyuk, V. Obzor produktov IXYS. Tverdotel'nye rele i poluprovodnikovye moduli vysokoy moschnosti Poluprovodnikovye (diskretnye) moduli ot IXYS [Review of IXYS products. Solid-state relays and high-power semiconductor modules Semiconductor (discrete) modules from IXYS] / V. Rentyuk // Silovaya elektronika. – 2021. – № 4 (91). – S. 14-15.

    [15] Shadmonhodzhaev, M.Sh. Razrabotka istochnika pitaniya dlya pozicii vibroakusticheskoy diagnostiki podshipnikov lokomotivnogo depo [Development of a power source for the position of vibroacoustic diagnostics of bearings of a locomotive depot] / M.Sh. Shadmonhodzhaev, A.P. Zelenchenko // Byulleten' rezul'tatov nauchnyh issledovaniy. – 2022. – № 2. – S. 43-49. – DOI: 10.20295/2223-9987-2022-2-43-49.

    [16] Mustafaev, A.G. Issledovanie ustoychivosti KMOP SBIS k effektu «zaschelkivaniya» [The study of the stability of CMOS VLSI to the effect of "latching"] / A.G. Mustafaev, G.A. Mustafaev, N.V. Cherkesova-Kalinina // Elektronika i elektrotehnika. – 2018. – № 4. – S. 1-7. – DOI: 10.7256/2453-8884.2018.4.28130.

    [17] Highly efficient 5.15- to 5.85-GHz neutralized HBT power amplifier for LTE applications / S. Kang [et al.] // IEEE Microwave and Wireless Components Letters. - 2018. – Vol. 28, № 3. - Pp. 254-256. – DOI: 10.1109/LMWC.2018.2795346.

    [18] Coverage enhancement and fundamental performance of 5G: Analysis and field trial / G. Liu [et al.] // Communications Magazine. – 2019. - Vol. 57, № 6. - Pp. 126-131. – DOI: 10.1109/MCOM.2019.1800543.

    [19] Ahmadi, S. 5G NR: Architecture, technology, implementation and operation of 3GPP new radio standards / S. Ahmadi. – London, UK: Academic Press, 2019. - pp. 90–98.

    [20] Kuwabara, T. A 28 GHz 480 elements digital AAS using GaN HEMT amplifiers with 68 dBm EIRP for 5G long-range base station applications / T. Kuwabara [et al.] // IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). – 2017. - Pp. 1-4. – DOI: 10.1109/CSICS.2017.8240471.

    [21] Schefter, M. A comparison of GaN VS GaAs system performance / M. Schefter, M. Ardavan // Aerospace China. – 2018. – Vol. 19(3). – Pp. 17-22. – DOI: 10.3969/j.issn.1671-0940.2018.03.003.

    [22] Shin, D.-H. 6-GHz-to-18-GHz AlGaN/GaN cascaded nonuniform distributed power amplifier MMIC using load modulation of increased series gate capacitance / D.-H. Shin, I.-B. Yom, D.-W. Kim // Etri Journal. – 2017. – Vol. 39 (5). - Pp. 737–745. – DOI: 10.4218/etrij.17.0116.0737.

    [23] Compact 20-W GaN internally matched power amplifier for 2.5 GHz to 6 GHz jammer systems / M.-P. Lee, S. Kim, S.-J. Hong, D.-W. Kim // Micromachines. – 2020. – Vol. 11 (4). – C. 375. – DOI: 10.3390/mi11040375.

    [24] A 6–18-GHz GaN Reactively Matched Distributed Power Amplifier Using Simplified Bias Network and Reduced Thermal Coupling / H. Park, H. Nam, K. Choi [et al.] // IEEE Transactions on Microwave Theory and Techniques. – 2018. - Vol. 66, no. 6. - Pp. 2638-2648. – DOI: 10.1109/TMTT.2018.2817521.

    [25] Broadband GaAs MESFET and GaN HEMT resistive feedback power amplifiers / K. Krishnamurthy, R. Vetury, S. Keller [et al.] // IEEE Journal of Solid-State Circuits. – 2000. – Vol. 35, no. 9. - Pp. 1285-1292. – DOI: 10.1109/4.868037.

    [26] Thermal management of GaN-on-Si high electron mobility transistor by copper filled micro-trench structure / S.K. Mohanty, Y.-Y. Chen, P.-H. Yeh [et al.] // Scientific Reports. – 2019. – Vol. 9. – C. 19691. – DOI: 10.1038/s41598-019-56292-3.

    [27] Darwish, A. Channel temperature analysis of GaN HEMTs with nonlinear thermal conductivity / A. Darwish, A.J. Bayba, H.A. Hung // IEEE Transactions on Electron Devices. – 2015. - Vol. 62, no. 3. - Pp. 840-846. – DOI: 10.1109/TED.2015.2396035.

  • С. 77-84.

DOI: 10.12737/2219-0767-2023-16-1-85-93

A.V. Poluektov1, R.Yu. Medvedev1, V.K. Zolnikov1

Simulation of diode operation and evaluation of its operation parameters
  • 1Voronezh State University of Forestry and Technologies named after G.F. Morozov

  • The article discusses the simulation of the operation of a diode based on the compiled electrical circuit, and also considers the analysis of the operation of the dido under various operating conditions using the AnyDynamics 8 computer simulation program. Various approaches to the concept of modeling, model, and mathematical model are considered. The classification of models of semiconductor devices, current-voltage characteristic (CVC) and device operation scheme are evaluated. The physical properties of the diode are considered, then a transition is made to the analysis of the operation of the diode in a physical model, and on its basis a mathematical model of the diode is built, since the model works with small changes in current and voltage, then the transition is made to a low-signal model and a system of differential equations, behavior of an ideal diode. Classes of elementary elements are being developed, from which it is possible to build an electronic circuit, diode, resistor, capacitor, coil. A circuit is determined with the help of which it is possible to simulate the operation of a circuit with a connected ideal diode. The result of the work of the electrical circuit in the program AnyDynamics 8 was the creation o behavior of an ideal diode. Analysis of the obtained graphs in the future will allow you to perform modeling and analysis of the operation of an ideal diode.
  • Ключевые слова — Modeling, computer modeling, model, diode, Class, small-signal model, volt-ampere characteristic.

  • [1] Kachestvennaya teoriya dinamicheskih sistem vtorogo poryadka [Qualitative theory of dynamical systems of the second order] / A.A. Andronov, E.A. Leontovich, M.I. Gordon, A.G. Mayer. – M. : Nauka, 1966. – 568 s.

    [2] Nagornov, Yu.S. Modelirovanie atomarnyh processov v nanokristallah metodom Monte-Karlo [Modeling of atomic processes in nanocrystals by the Monte Carlo method] : metodicheskie rekomendacii / Yu.S. Nagornov. – Tol'yatti: TGU, 2012. – 19 s.

    [3] Matematicheskoe modelirovanie v sisteme «Stratum Computer» [Mathematical modeling in the Stratum Computer system] / D.V. Bayandin, A.V. Kubyshkin, O.I. Muhin, A.A. Ryabuha // Problemy obrazovaniya, nauchno-tehnicheskogo razvitiya i ekonomiki Ural'skogo regiona : sbornik trudov Vserossiyskoy nauchno-prakticheskoy konferencii. - Berezniki, 1996. - S. 80-81.

    [4] Zol'nikov, V.K. Modelirovanie i analiz proizvoditel'nosti algoritmov balansirovki nagruzki oblachnyh vychisleniy [Modeling and performance analysis of cloud computing load balancing algorithms] / V.K. Zol'nikov, O.V. Oksyuta, N.F. Dayub // Modelirovanie sistem i processov. – 2020. – T. 13, № 1. – S. 32-39. – DOI: 10.12737/2219-0767-2020-13-1-32-39.

    [5] Sistema upravleniya raspredeleniem rabot pri proektirovanii slozhnyh tehnicheskih sistem [The control system for the distribution of work in the design of complex technical systems] / T.P. Novikova, K.V. Zol'nikov, A.Yu. Kulay [i dr.] // Informacionnye tehnologii v upravlenii i modelirovanii mehatronnyh sistem : sbornik materialov 1-y nauchno-prakticheskoy mezhdunarodnoy konferencii. – Tambov, 2017. – S. 199-204.

    [6] Yudina, N.Yu. Analiz faktorov, okazyvayuschih vliyanie na nadezhnost' strukturnyh elementov slozhnyh vychislitel'nyh sistem [Analysis of factors influencing the reliability of structural elements of complex computing systems] / N.Yu. Yudina, A.N. Kovalev // Modelirovanie sistem i processov. – 2017. – T. 10, № 3. – S. 86-93. – DOI: 10.12737/article_5a2928416cdb36.94937249.

    [7] Opredelenie sobstvennyh teplovyh soprotivleniy silovyh tranzistorov i diodov IGBT modulya na osnove ego trehmernoy modeli / M. V. Il'in, E. A. Vilkov, I. V. Gulyaev, F. Briz Del' Blanko // Elektrotehnika. – 2019. – № 7. – S. 19-23.

    [8] V'yurkov, V.V. Proletnye diody i tranzistory s peremennoy inzhekciey kak generatory i detektory izlucheniya teragercovogo diapazona [Span diodes and transistors with variable injection as generators and detectors of terahertz radiation] / V.V. V'yurkov, K.V. Rudenko, V.F. Lukichev // SVCh-tehnika i telekommunikacionnye tehnologii. – 2020. – № 1-1. – S. 320-321.

    [9] Maksimenko, Yu.N. Moschnyy vysokovol'tnyy tranzistor so staticheskoy indukciey s antiparallel'nym diodom [A powerful high-voltage transistor with static induction with an antiparallel diode] / Yu.N. Maksimenko // Elektronnaya tehnika. Seriya 2: Poluprovodnikovye pribory. – 2022. – № 3(266). – S. 55-62. – DOI: 10.36845/2073-8250-2022-266-3-56-62.

    [10] Kondusov, V.V. Avtomatizirovannaya zondovaya stanciya dlya ispytaniya elektricheskih parametrov kristallov diodov i tranzistorov [Automated probe station for testing the electrical parameters of crystals of diodes and transistors] / V.V. Kondusov, V.A. Kondusov // Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. – 2019. – T. 15, № 5. – S. 105-110. – DOI: 10.25987/VSTU.2019.15.5.014.

    [11] Analiticheskaya model' proletnyh diodov i tranzistorov dlya generacii i detektirovaniya teragercovogo izlucheniya [Analytical model of span diodes and transistors for generation and detection of terahertz radiation] / K.V. Rudenko, M.K. Rudenko, I.A. Semenihin [i dr.] // Mikroelektronika. – 2018. – T. 47, № 5. – S. 14-21. – DOI: 10.31857/S054412690001732-2.

    [12] Sposob snizheniya dinamicheskih poter' v polumostovoy tranzistornoy sheme [A method for reducing dynamic losses in a half-bridge transistor circuit] / O.A. Danilov, A.L. Ivanov, S.A. Il'in [i dr.] // Vestnik Chuvashskogo universiteta. – 2020. – № 1. – S. 89-96.

    [13] Dunaev, M.P. Modelirovanie poter' moschnosti v preobrazovatele chastoty [Modeling of power losses in a frequency converter] / M.P. Dunaev, S.U. Dovudov // Elektrotehnicheskie sistemy i kompleksy. – 2021. – № 2 (51). – S. 45-51. – DOI: 10.18503/2311-8318-2021-2(51)-45-51.

    [14] Rentyuk, V. Obzor produktov IXYS. Tverdotel'nye rele i poluprovodnikovye moduli vysokoy moschnosti Poluprovodnikovye (diskretnye) moduli ot IXYS [Review of IXYS products. Solid-state relays and high-power semiconductor modules Semiconductor (discrete) modules from IXYS] / V. Rentyuk // Silovaya elektronika. – 2021. – № 4 (91). – S. 14-15.

    [15] Shadmonhodzhaev, M.Sh. Razrabotka istochnika pitaniya dlya pozicii vibroakusticheskoy diagnostiki podshipnikov lokomotivnogo depo [Development of a power source for the position of vibroacoustic diagnostics of bearings of a locomotive depot] / M.Sh. Shadmonhodzhaev, A.P. Zelenchenko // Byulleten' rezul'tatov nauchnyh issledovaniy. – 2022. – № 2. – S. 43-49. – DOI: 10.20295/2223-9987-2022-2-43-49.

    [16] Mustafaev, A.G. Issledovanie ustoychivosti KMOP SBIS k effektu «zaschelkivaniya» [The study of the stability of CMOS VLSI to the effect of "latching"] / A.G. Mustafaev, G.A. Mustafaev, N.V. Cherkesova-Kalinina // Elektronika i elektrotehnika. – 2018. – № 4. – S. 1-7. – DOI: 10.7256/2453-8884.2018.4.28130.

    [17] Highly efficient 5.15- to 5.85-GHz neutralized HBT power amplifier for LTE applications / S. Kang [et al.] // IEEE Microwave and Wireless Components Letters. - 2018. – Vol. 28, № 3. - Pp. 254-256. – DOI: 10.1109/LMWC.2018.2795346.

    [18] Coverage enhancement and fundamental performance of 5G: Analysis and field trial / G. Liu [et al.] // Communications Magazine. – 2019. - Vol. 57, № 6. - Pp. 126-131. – DOI: 10.1109/MCOM.2019.1800543.

    [19] Ahmadi, S. 5G NR: Architecture, technology, implementation and operation of 3GPP new radio standards / S. Ahmadi. – London, UK: Academic Press, 2019. - pp. 90–98.

    [20] Kuwabara, T. A 28 GHz 480 elements digital AAS using GaN HEMT amplifiers with 68 dBm EIRP for 5G long-range base station applications / T. Kuwabara [et al.] // IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). – 2017. - Pp. 1-4. – DOI: 10.1109/CSICS.2017.8240471.

    [21] Schefter, M. A comparison of GaN VS GaAs system performance / M. Schefter, M. Ardavan // Aerospace China. – 2018. – Vol. 19(3). – Pp. 17-22. – DOI: 10.3969/j.issn.1671-0940.2018.03.003.

    [22] Shin, D.-H. 6-GHz-to-18-GHz AlGaN/GaN cascaded nonuniform distributed power amplifier MMIC using load modulation of increased series gate capacitance / D.-H. Shin, I.-B. Yom, D.-W. Kim // Etri Journal. – 2017. – Vol. 39 (5). - Pp. 737–745. – DOI: 10.4218/etrij.17.0116.0737.

    [23] Compact 20-W GaN internally matched power amplifier for 2.5 GHz to 6 GHz jammer systems / M.-P. Lee, S. Kim, S.-J. Hong, D.-W. Kim // Micromachines. – 2020. – Vol. 11 (4). – C. 375. – DOI: 10.3390/mi11040375.

    [24] A 6–18-GHz GaN Reactively Matched Distributed Power Amplifier Using Simplified Bias Network and Reduced Thermal Coupling / H. Park, H. Nam, K. Choi [et al.] // IEEE Transactions on Microwave Theory and Techniques. – 2018. - Vol. 66, no. 6. - Pp. 2638-2648. – DOI: 10.1109/TMTT.2018.2817521.

    [25] Broadband GaAs MESFET and GaN HEMT resistive feedback power amplifiers / K. Krishnamurthy, R. Vetury, S. Keller [et al.] // IEEE Journal of Solid-State Circuits. – 2000. – Vol. 35, no. 9. - Pp. 1285-1292. – DOI: 10.1109/4.868037.

    [26] Thermal management of GaN-on-Si high electron mobility transistor by copper filled micro-trench structure / S.K. Mohanty, Y.-Y. Chen, P.-H. Yeh [et al.] // Scientific Reports. – 2019. – Vol. 9. – C. 19691. – DOI: 10.1038/s41598-019-56292-3.

    [27] Darwish, A. Channel temperature analysis of GaN HEMTs with nonlinear thermal conductivity / A. Darwish, A.J. Bayba, H.A. Hung // IEEE Transactions on Electron Devices. – 2015. - Vol. 62, no. 3. - Pp. 840-846. – DOI: 10.1109/TED.2015.2396035.

  • С. 85-93.

DOI: 10.12737/2219-0767-2023-16-1-93-104

E.V. Raetskaya1

Structural analysis of the control function of a dynamic system in partial derivatives of different order
  • 1Voronezh State University of Forestry and Technologies named after G.F. Morozov, This email address is being protected from spambots. You need JavaScript enabled to view it.

  • For a dynamic system described by a partial differential equation of different order, the problem of constructing software control in an analytical form is solved. The primary method of research is the cascade decomposition method, the improved algorithm of which includes three main stages: the forward move, the central stage and the reverse move. The method is based on the properties of the matrix coefficient with a second-order partial derivative of the control function. The noetherianness of the coefficient causes the splitting of the original space into direct sums of subspaces. A scheme for structuring subspaces in accordance with the properties of the matrix coefficient is given. The direct move of decomposition is realized, which consists in a step-by-step transition to equivalent hierarchically structured systems of two levels in subspaces. The step-by-step structuring of the components of the state function into functions from subspaces while using matrix coefficients - projectors is performed. The resulting functions from subspaces are called pseudo-state and pseudo-control functions. Graphical visualization of the hierarchical structure of the source space in the form of a diagram is performed. This scheme reflects the essential connections between the components of the subspaces of each decomposition level. Finite-dimensional spaces are considered, which causes the complete completion of the first stage of the algorithm in a finite number of steps not exceeding the dimension of the original space. During the decomposition, the conditions at the start and end points are reduced, so that at the end of each step of the forward stroke, one additional condition appears at each point for each second-level system. In the process of implementing the first stage of the algorithm, the properties of matrix coefficients entailing full controllability or unmanageability of the initial system are established; the properties of functions in the initial conditions necessary for the implementation of the controlled process are also revealed. The criterion of complete controllability of the initial system is deduced. For a fully controlled system, a transition is made to the central stage of the algorithm – the construction of a defining basis function that satisfies all additional conditions for partial derivatives in time at each point resulting from the reduction of the original ones. It is the presence of this defining basic function that lays the prerequisites for constructing the state and control functions of the initial system at the final stage of the algorithm. A diagram visualizing the procedure of step-by-step restoration of the components of the state function in the process of implementing the reverse course is given. The reverse is completed by explicitly constructing first the state function, then the control function. A qualitative analysis of the management structure of the system under study is carried out.
  • Ключевые слова — Algorithm, cascade decomposition, dynamic system, program control, state function, partial derivatives, matrix coefficient, structural analysis.

  • [1] Petrenko, P.S. Controllability of a Singular Hybrid System / P.S. Petrenko // The bulletin of Irkutsk state university. Series: Mathematics. – 2020. – Vol. 34. – Pp. 35-50. – DOI: 10.26516/1997-7670.2020.34.35.

    [2] Petrenko, P.S. Robastnaya upravlyaemost' nestacionarnyh differencial'no-algebraicheskih uravneniy [Robust controllability of unsteady differential-algebraic equations] / P.S. Petrenko // Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika. – 2018. – T. 25. – S. 79-92. – DOI: 10.26516/1997-7670.2018.25.79.

    [3] Furtat, I.B. Spatially Discrete Control of Scalar Linear Distributed Plants of Parabolic and Hiperbolic Types / I.B. Furtat, P.A. Gushin // Automation and Remote Control. – 2021. – T. 82 (3) – Pp. 433-448. – DOI: 10.1134/S0005117921030048.

    [4] Elkin, V.I. Primenenie differencial'no-geometricheskih metodov teorii upravleniya v teorii differencial'nyh uravneniy s chastnymi proizvodnymi. I [Application of differential geometric methods of control theory in the theory of partial differential equations. I] / V.I. Elkin // Differencial'nye uravneniya. – 2021. – T. 57, № 11. – S. 1474-1482. – DOI: 10.31857/S0374064121110054.

    [5] Futat, I.B. Upravlenie dinamicheskimi ob'ektami s garantiey nahozhdeniya reguliruemogo signala v zadannom mnozhestve [Control of dynamic objects with a guarantee of finding an adjustable signal in a given set] / I.B. Furtat, P.A. Guschin // Avtomatika i telemehanika. – 2021. – T. 4. – S. 121-139. – DOI: 10.31857/S000523102104005X.

    [6] Antipov, A.S. Synthesis of Invariant Nonlinear Signal-Channel Sigmoid Feedback Tracking Systems Ensuring Given Tracking Accuracy / A.S. Antipov, S.A. Krasnova, V.A. Utkin // Automation and Remote Control. – 2022. – T. 83(1). – Pp. 32-53. – DOI: 10.31857/S0005231022010032.

    [7] Scheglova, A.A. Ob upravlyaemosti differencial'no-algebraicheskih uravneniy v klasse impul'snyh vozdeystviy [On the controllability of differential-algebraic equations in the class of impulse actions] / A.A. Scheglova //Sibirskiy matematicheskiy zhurnal. – 2018. – T. 59, № 1. – P. 210-224. – DOI: 10.17377/smzh.2018.59.118.

    [8] Prilepko, A.I. Zadachi upravleniya i nablyudeniya v banahovyh prostranstvah. Optimal'noe upravlenie i princip maksimuma. Primenenie dlya ODU v [Problems of control and observation in Banach spaces. Optimal control and the principle of maximum. Application for ODE in ] / A.I. Prilepko // Differencial'nye uravneniya. – 2019. – T. 55, № 12. – S. 1683-1692. – DOI: 10.1134/S0374064119120094.

    [9] Amosova, E.V. Tochnaya lokal'naya upravlyaemost' dvumernym techeniem vyazkogo gaza [Exact local controllability of a two-dimensional viscous gas flow] / E.V. Amosova // Differencial'nye uravneniya. – 2020. – T. 56, № 11. – S. 1447-1470. – DOI: 10.1134/S0374064120110047.

    [10] Mezhdu LOG/H2 i H1 teoriyami upravleniya [Between LOG/H2 and H1 control theories] / A.P. Kurdyukov, O.G. Andrianova, A.A. Belov, D.A. Gol'din // Avtomatika i telemehanika. – 2021. – T. 4. – S. 8-76. – DOI: 10.31857/S0005231021040024.

    [11] Maksimov, V.I. O garantirovannom upravlenii lineynoy sistemoy differencial'nyh uravneniy pri nepolnoy informacii o fazovyh koordinatah [On guaranteed control of a linear system of differential equations with incomplete information about phase coordinates] / V.I. Maksimov // Differencial'nye uravneniya. – 2021. – T. 57, № 11. – S. 1491-1502. – DOI: 10.31857/S0374064121110078.

    [12] Hramcov, O.V. Upravlyaemost' vpolne integriruemyh lineynyh nestacionarnyh sistem Pfaffa [Controllability of fully integrable linear nonstationary Pfaff systems] / O.V. Hramcov, S.A. Prohozhiy // Differencial'nye uravneniya. – 2020. – T. 56, № 8. – S. 1130-1134. – DOI: 10.1134/S0374064120080130.

    [13] Golubev, A.E. construction of programmed motion of constrained mechanical systems using third-order polinomials / A.E. Golubev // Journal of Computer and Systems Sciences International. – 2021. – Vol. 60 (2) – Pp. 303-314. – DOI: https://doi.org/10.1134/S1064230720060040.

    [14] Priluckiy, M.H. Programmnye upravleniya dvuhstadiynymi stohasticheskimi proizvodstvennymi sistemami [Software control of two-stage stochastic production systems] / M.H. Priluckiy // Avtomatika i telemehanika. – 2020. – № 1. – S. 81-92. – DOI: 10.31857/S0005231020010067.

    [15] Raeckaya, E.V. Algoritm postroeniya upravleniya dinamicheskoy sistemoy v chastnyh proizvodnyh [Algorithm for constructing control of a dynamic system in partial derivatives] / E.V. Raeckaya // Modelirovanie sistem i processov. – 2022. – T. 15, № 4. – S. 116-127. – DOI: 10.12737/2219-0767-2022-15-4-116-127.

    [16] Zubova, S.P. Solution of the multi-point control problem for a dynamic system in partial derivatives / S.P Zubova, E.V Raetskaya // Mathematical Methods in the Applied Science. – 2021. - Vol. 44, № 15. – Pp. 11998-12009. – DOI: 10.1002/mma.7130.

    [17] Zubova, S.P. Control problem for dynamical systems with partial derivatives / S.P Zubova, E.V Raetskaya, L.H. Trung // Journal of Mathematical Sciences. – 2021. – V. 249, № 6. – P. 941-953. – DOI: 10.1007/s10958-020-04986-9.

    [18] Zubova, S.P. Issledovanie singulyarno vozmuschennoy sistemy upravleniya [Investigation of a singularly perturbed control system] / S.P. Zubova, E.V. Raeckaya // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. – 2018. – T. 23, № 122. – S. 303-308. - DOI: 10.20310/1810-0198-2018-23-122-303-308.

    [19] Zubova, S.P. Construction of controls providing the desired output of the linear dynamic system derivatives / S.P Zubova, E.V Raetskaya // Automation and Remote Control. – 2018. – Vol. 79 (5). – P. 775-792. – DOI: 10.1134/S0005117918050016.

    [20] Zubova, S.P. Algoritm resheniya lineynyh mnogotochechnyh zadach upravleniya metodom kaskadnoy dekompozicii [Algorithm for solving linear multipoint control problems by cascade decomposition method] / S.P. Zubova, E.V. Raeckaya // Avtomatika i telemehanika. – 2017. – № 7. – S. 22-38. – DOI: 10.1134/S0005117917070025.

    [21] Zubova, S.P. Postroenie upravleniya dlya polucheniya zadannogo vyhoda v sisteme nablyudeniya [Building control to obtain a given output in the surveillance system] / S.P. Zubova, E.V. Raeckaya // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. - 2015. – T. 20, № 5. – S. 1400-1404.

    [22] Zubova, S.P. O polinomial'nyh resheniyah lineynoy stacionarnoy sistemy upravleniya [On polynomial solutions of a linear stationary control system] / S.P. Zubova, E.V. Raeckaya, Le Hay Chung // Avtomatika i telemehanika.- 2008. – № 11. – S. 41-47.

    [23] Zubova, S.P. Invariance of a nonstationary observability system under certain perturbations [Invariance of a nonstationary observability system under certain perturbations] / S.P Zubova, E.V Raetskaya // Journal of Mathematical Sciences. – 2013. - Vol. 188, № 3. – Pp. 218-226. – DOI: 10.1007/s10958-012-1120-9.

    [24] Zubova, S.P. Ob invariantnosti nestacionarnoy sistemy nablyudeniya otnositel'no nekotoryh vozmuscheniy / S.P. Zubova, E.V. Raeckaya, T.K. Fam // Vestnik Tambovskogo universiteta. Ser. Estestvennye i tehnicheskie nauki. – 2010. – T. 15, № 6. – S. 1678-1679.

    [25] Zubova, S.P. A study of the rigidity descriptor dynamical systems in a banach spase [A study of the rigidity descriptor dynamical systems in a banach spase] / S.P Zubova, E.V Raetskaya // Journal of Mathematical Sciences. – 2015. - Vol. 208, № 1. 2015. – Pp. 131-138. - DOI: 10.1007/s10958-015-2430-5.

    [26] Zubova, S.P. Reshenie zadachi Koshi dlya dvuh deskriptornyh uravneniy s neterovym operatorom / S.P. Zubova, E.V. Raeckaya // Doklady akademii nauk. – 2014. – T. 459, № 5. – S. 640-652. – DOI: 10.7868/S0869565214350084.

    [27] Zubova, S.P. Degeneraty Property of a Matrix Differential Operator and Applications / S.P Zubova, E.V Raetskaya, V.I. Uskov // Journal of Mathematical Sciences. 2021. – Vol. 255, № 5. – P. 640-652. – DOI: 10.1007/s10958-021-05401-7.

    [28] Zubova, S.P. Reshenie polugranichnoy zadachi dlya vyrozhdennogo uravneniya v chastnyh proizvodnyh [The solution of a semi-boundary value problem for a degenerate partial differential equation] / S.P. Zubova, E.V. Raeckaya // Differencial'nye uravneniya. – 2022. – T. 58, № 9. – S. 1193-1204. – DOI: 10.31857/S0374064122090035.

  • С. 93-104.